
Literal-Independent Clause Processing for Unit Resolution

Trevor Standley and Chu-Cheng Hsieh
Computer Science Department

University of California, Los Angeles
{tstand, chucheng}@cs.ucla.edu

Abstract

We present a new and substantially different unit propa-
gation technique based on the two literal watch scheme
used in modern SAT solvers that allows for significantly
shorter learned clauses. We have implemented our
method on top of TiniSAT 0.22 (a lightweight solver
written in C++). Benchmarks were run on instances from
the 2005 SAT competition, and SAT race 2006, and re-
sults show that our method learns clauses an average of
26% shorter than unmodified TiniSAT, resulting in an
average of 17% fewer decisions before a solution is
found.

Introduction

Unit resolution is an important component in most
modern SAT solvers. It allows a solver to prune the
search space from an unruly to a manageable size, and
its ability to detect dead-ends in the search tree can be
improved by conflict clause learning [1].

The ability of a conflict clause to detect dead-ends de-
pends in part on the size of the conflict clause. Smaller
clauses make stronger statements, and place tighter
constraints on possible variable assignments. The goal
of this paper is to devise a method of deriving stronger
conflict clauses, and to explore alternatives to the stan-
dard unit propagation algorithm.

We begin with a review of modern SAT solving meth-
ods focusing on the implementation details of TiniSAT,
the solver on which we have made our modifications.
We move on to where our approach differs from that of
TiniSAT, and describe in detail the changes we have
made. We then describe our experiments, the results,
and our analysis of what happened. We conclude with
some suggestions for future work in this area.

TiniSAT
TiniSAT[2] is a lightweight SAT solver written in C++
to be readable and easy to modify. For this reason, we
found TiniSAT to be the ideal testbed of our ideas.

We will now give an introduction to the structure of
TiniSAT. TiniSAT is arranged in a way that is quite
typical of modern SAT solvers, and so the following
can be seen as an introduction to SAT solving in gen-
eral.

TiniSAT consists of a main loop (Figure 1), which con-
tains each of the elements described below.

At every iteration, TiniSAT makes an assumption about
the value of one of the variables (selectLiteral()).
TiniSAT uses a decision heuristic to decide what as-
sumption to make, i.e., which variable and what value,
but it will always choose a variable the value of which
unit propagation has not yet discovered under the cur-
rent set of decisions. If no such literal exists then the
values of all literals have either been decided on, or the
values have been discovered without a contradiction,
and therefore the instance is satisfied.

In order to decide which literal to assume next, Tini-
SAT uses a modification of the VSIDS heuristic. Tini-
SAT starts by giving a score to every literal. Specifi-
cally, the initial value of each literal is the number of
clauses in which it occurs. Every time a clause is
learned, the score of every literal in the clause is incre-
mented. However, in order to encourage TiniSAT to
choose literals that are active in recently learned
clauses, the score of each literal is halved every 128
conflicts. The score of a variable is the sum of the two
literals it can take on. The rationale is that the values of
variables that are in many clauses are harder to deter-
mine, and variables that appear in recent conflict
clauses are nearer to the “heart” of the problem. In or-
der to choose a variable, TiniSAT goes through a list of
recent conflict clauses and chooses the variable with the
highest score. If an assumption about the value of the
variable has been made before, TiniSAT picks the value
that the variable was last assumed to have unless the
score of one of the values (as in positive or negative) is

Algorithm TINISAT
1. loop
2. if (literal = selectLiteral()) == nil
3. return SATISFIABLE
4. if !propagate(literal)
5. repeat
6. learnClause()
7. if assertionLevel() == 0 then
8. return UNSATISFIABLE
9. if restartPoint() then
10. backtrack(1)
11. else
12. backtrack(assertionLevel())
13. until assertLearnedClause()

Figure 1. Pseudo-code of TiniSAT from [8]

significantly higher than the score of the other. If there
are no clauses to choose from, TiniSAT falls back on
traditional VSIDS which can choose a variable even if
it is not in a recently learned clause. This heuristic is
proposed by Jinbo[2], which is essentially a combina-
tion of Chaff[5] and BerkMin[6].

TiniSAT then discovers as much as it can about the
ramifications of the current decision by running unit
propagation (propagate(literal)). Unit propagation
may find a contradiction in the current decision se-
quence, and in this case the algorithm will do two
things. First it will discover a clause that is implied by
the original knowledge base and add it to the clause list
in the hopes that it will make unit resolution more ca-
pable of finding a contradiction in the future. Second,
the algorithm will backtrack.

Starting with chaff[4], SAT solvers perform unit propa-
gation in an efficient way. Namely, they use a two lit-
eral watch scheme. In order to tell when a clause has
become unit, SAT solvers “watch” two free literals in
each clause. Every variable has two watch lists (one
corresponding to the positive, and another correspond-
ing to the negative) containing each of the clauses for
which it is a watch variable. When the value of a watch
variable becomes set, the watch list for the literal oppo-
site in sign is traversed, and each clause it contains is
processed. When a clause is processed, at least one of
its watch variables must have become negative (re-
solved) and so a new watch variable must be selected if
possible. If it is not possible to find a suitable free lit-
eral in a clause then the clause has become unit (or
empty if both watch variables are resolved). If a clause
becomes unit, the literal it contains must be true, the
variable’s value is set, and it is put onto a stack so that
its watch list may be processed in order. Implied vari-
ables are given a pointer to the clause that became unit
for conflict clause learning. It is only necessary to
watch two literals because a clause cannot become unit
if two literals are not both false.

Upon detection of an inconsistency in the state of the
solver via unit resolution, solvers perform a series of
resolution steps to derive a clause implied by the
knowledge base. This is called the conflict clause.
Solvers resolve clauses that became unit (called reasons
or antecedents) with the empty clause until the derived
clause only contains one literal from the current deci-
sion level. Remember that shorter conflict clauses typi-
cally make stronger statements about the solution, and
allow subsequent runs of unit resolution to detect in-
consistency faster. For this reason it is important for the
antecedents to be short. It is also important for the ante-
cedents to share literals; this is because the resolvent

will only contain one version of any shared literals. It is
called merge resolution when the two clauses being
resolved share a literal, and merge resolution is impor-
tant because it is the only way for the conflict clause to
become shorter.

TiniSAT, like most modern SAT solvers, processes the
watched clauses on an implied literal’s watch list in
sequential order, and chooses watch lists to process
arbitrarily. The order in which clauses are processed is
important because it is only the first clause that implies
a particular literal or becomes empty that has a chance
to participate in the derivation of the conflict clause.

Backtracking involves unmaking some number of re-
cent decisions that were discovered to be erroneous.
Every learned clause contains one literal that was im-
plied at the current decision level, the second highest
level in which a literal in the conflict clause was im-
plied is the backtrack level. It is safe to unmake all de-
cisions made after this decision, i.e., every such deci-
sion must cause inconsistency. backtrack() simply sets
the value of every variable implied after the backtrack
level to free.

Intuitively, sometimes the decisions made by SAT
solvers lead it to a place in the decision tree where the
solver can wander aimlessly for a large period of time.
In order to reduce the amount of time spent wandering,
solvers sometimes induce a restart to the very beginning
of the decision sequence. This is done using a restart
schedule, or restart policy.

TiniSAT uses a well-known restart policy which was
proposed by Luby et al.[7] They were able to prove
optimality guarantees for their policy for many types of
algorithms that have randomly distributed runtimes.
They showed that (1) it approximates the optimal policy
within a logarithmic factor, and (2) it determines the
specific distribution of the runtime for different prob-
lem instances, and (3) no policy can be more than a
constant factor faster. Under Luby’s policy, the solver
restarts as soon as some number of conflicts has oc-
curred. In TiniSAT, the number is given by 512 multi-
plied by the following sequence: 1, 1, 2, 1, 1, 2, 4, 1, 1,
2, 4, 8… Although the solver forgets its decisions, it
keeps the clauses it has learned.

Our Modifications
Ideally, every clause processed during the unit propaga-
tion algorithm would be processed independently of the
watched literals, and in an order that takes into account
our preference for short clauses that share literals. This
could also be used to encourage a contradiction (if any)
to be found more quickly.

Figure 1 is the pseudocode for TiniSAT’s unit propaga-
tion subroutine. Figure 2 is the pseudo-code of our ap-
proach.

Recall that when running the unit propagation algo-
rithm, SAT solvers typically process the watch lists of
implied literals completely before moving on to the
watch list of another implied literal. In contrast, our
approach involves using a priority queue of watched
clauses.

We wish to process small clauses as quickly as possible
so that the antecedents of derived literals are as small as
possible. We also wish to encourage merge resolution
to take place during the derivation of the conflict
clause. Since we cannot tell a priori which literals the
running derivation of the conflict clause will contain,
we attempt to guess which literals it is likely to contain,

and encourage those literals to appear in multiple ante-
cedents.

To that end, clauses are ranked first on their size, and
second on the sum of the scores of their contained liter-
als, where a literal’s score is the number of clauses that
contain the literal.

We believe that if clauses are picked that contain liter-
als that are common in all clauses, those literals will
also be common in clauses that are used to derive the
conflict clause. Also, by simply biasing probabilities
with which literals are chosen, there will be literals
(those with high probability) that will be likely to ap-
pear multiple times in the derivation of a conflict
clause.

def clause::unwatch(lit)
 otherWatch = otherWatch(lit)

 //i this clause’s the index in lit’s watchlist
 watchList(lit)[i] = watchList(lit).back()
 watchList(lit).pop_back()

 // clauses are stored as an array of literals
 // the first two literals in a clause are the
 // watched literals.
 swap out lit from watch position

def propagate(lit)
 lit.value = true

 stack.push(lit)

 while stack not empty:

 lit = -stack.pop()
 // process watch list for lit
 for clause in wachList(lit)
 // pick the second watch in the clause
 otherWatch = clause.otherWatch(lit)

 // clause subsumed
 if set(otherWatch) continue

 // find other watch
 newWatch = null
 for literal in clause.notWatched()
 if literal.value != false
 newWatch = literal

 if newWatch // suitable watch found
 clause.watch(newWatch)
 clause.unwatch(lit)
 else if free(otherWatch) // implication
 otherWatch.value = true
 otherWatch.antecedent = clause
 stack.push(otherWatch);
 else if otherWatch.value == false
 // contradiction

 // begins clause learning algorithm
 // with the clause that became empty
 learnClause(clause)
 return

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

def enqueueWatchList(lit, priorityQueue)
 for i = 0 to wachList(lit).size()
 watchedClause c
 c.lit = lit
 c.index = i
 // find the score by summing scores of
 // literals contained in this clause
 for literal in watchlist(lit)[i]
 c.score += literal.score
 // reduce score by 2^20 * size of clause
 // to prioritize smaller clauses
 c.score -= size(watchList(lit)[i]) << 20;
 priorityQueue.push(c)
 return

def propagate(lit)
 lit.value = true
 priorityQueue.empty()

 enqueueWatchList(lit, priorityQueue)

 while priorityQueue not empty:
 c = priorityQueue.pop()
 lit = c.lit
 clause = watchList(lit)[c.index]

 // pick the second watch in the clause
 otherWatch = clause.otherWatch(lit)

 // clause subsumed
 if set(otherWatch) continue

 // find other watch
 newWatch = null
 for literal in clause.notWatched()
 if literal.value != false
 newWatch = literal

 if newWatch // suitable watch found
 clause.watch(newWatch)
 clause.unwatch(lit)
 else if free(otherWatch) // implication
 otherWatch.value = true
 otherWatch.antecedent = clause
 enqueueWatchList(otherWatch,priorityQueue)
 else if otherWatch.value == false
 // contradiction

 // begins clause learning algorithm
 // with the clause that became empty
 learnClause(clause)
 return

Figure 2. Pesudocode for TiniSAT’s unit propagation subroutine. Figure 3. Pesudocode for the modification.

Every time a clause becomes unit, we add each clause
in the appropriate watch list to the priority queue.
Clauses on the priority queue are represented by a
structure that contains the implied literal that is being
watched, the position of the clause in the literal’s watch
list, and the clause’s score. The initial literal’s watch
list is originally dumped into the priority queue before
the main loop.

The main loop consists of popping the most promising
watched clause from the priority queue, and processing
that clause in pretty much the traditional way.

Complications
One complication involves removing a clause from a
literal’s watch list when another suitable watch has
been found. The above method requires an index into
the watch list of the watched variable. This can be made
available by using an index rather than a pointer when
defining a watchedClause (line 5); however, if we were
to use the simple unwatching function above, the index
of the clause in the back would be changed. Because it
is in a priority queue, there is no way to find it and cor-
rect the error. Instead, we simply store null at the loca-
tion in the unwatched variable’s watch list, and store
the variable in a purge list for later purging (not
shown).

Also, while using a priority queue is simple, it is pro-
hibitively expensive. Fortunately, the data we are order-
ing has some special structure. We know that clauses of
lower size must be ejected by the queue first. We can
therefore use an array of queues each of which only
stores clauses of a specific size. For example, we may
have an array of five priority queues. queue[0] stores
clauses of size 2, queue[1] stores clauses of size 3, and
so on until queue[4] , which stores all larger clauses. We
can keep track of the smallest clause in the queue, and
eject from the appropriate queue first. Early experi-
ments showed that a maximum in efficiency is around 4
queues, and that this technique results in a greater than
40% speedup.

Since TiniSAT’s clause learning requires the stack or-
der for implied literals, we must keep track of this as
well.

Experimental Results
 Decisions Conflicts Restarts Merges Size of CC Time

TiniSAT 426021.5 59172.8 38.2 3.95 33.4 69.41
TiniSAT’ 356775.7 43619.2 30.2 4.00 24.8 151.22
ratio 0.83 0.73 0.79 1.01 0.74 2.17
Figure 3. Average results for the 93 problems solved by both solvers

TiniSAT was run alongside our modification on 168
SAT problems from SAT Race 2006, and the industrial
category of the 2005 SAT competition. Of these, Tini-

SAT solved 106, and our modification solved 96. There
was a 20 minute time limit per instance. Although our
method solved ten fewer problems than unmodified
TiniSAT, the results are promising.

Processing clauses in an order that encourages small
clauses to participate in the derivation of a conflict
clause seems to drastically decrease the size of the con-
flict clauses eventually learned (to 74%). This in turn
cuts down the number of decisions the solver has to
make before arriving at a solution. Since merge resolu-
tions are more prevalent early in the decision sequence
and our solver doesn’t make as many decisions, merge
resolution has been encouraged even though it would
appear that the average number of merge resolutions
per conflict is somewhat constant.

The overhead involved in this implementation of the
modification seems to be the reason for the large reduc-
tion of speed, but much of the overhead in our imple-
mentation is unnecessary. It should be possible to score
a clause when it is created instead of on the fly, and this
would lead to a substantial decrease in overhead. How-
ever, the data structures that TiniSAT uses to store
clauses would make this optimization cumbersome.

TiniSAT also benefits from implication lists for binary
clauses[10]. This feature was turned off in our modifi-
cation to reduce the complexity of the code, but there is
no reason conceptually that this optimization is incom-
patible with our modifications. Furthermore, this opti-
mization seems to drastically improve the speed of
TiniSAT.

There are also many applications in which speed is not
the primary concern. For example, DPLL-like algo-
rithms are used in the area of knowledge compilation,
and in this area the trace of the algorithm is saved. Even
though the time to complete may be longer, the size of
the resulting trace is shorter, which could be important.

Because our modification does not make as many deci-
sions, and the average size of the generated conflict
clause is small, our modification also uses significantly
less memory than the original TiniSAT. This can be
important in situations when memory is a bottleneck in
solving a problem.

Conclusion

We have introduced a new method for performing unit
resolution in SAT solvers based on the two literal watch
scheme that processes clauses independently. We have
shown one way that this new freedom can be taken ad-
vantage of by introducing a natural heuristic to accom-
pany this method, and empirically shown that the heu-
ristic is effective at substantially reducing the average

size of the learned conflict clause when a contradiction
is reached.

Future Work
In [5], Pipatsrisawat et al. suggest learning bi-asserting
clauses, i.e., those that have two variables at the asser-
tion level instead of only one. In order to make this
worthwhile, it is necessary that at least one step in the
resolution process used to derive the conflict clause be
a merge resolution. Since our heuristic encourages
merge resolution, it may be even more powerful when
combined with this technique, however TiniSAT
doesn’t yet learn such clauses.

Having a strict ordering on clauses might not be neces-
sary, so it might be possible to get similar benefits with
less overhead by keeping clauses in some loose order.

It might not be necessary to order the clauses at all. One
might be able to devise a way to simply update the an-
tecedent of a literal with a better clause. The naïve way
of going about this, however, often results in the impli-
cation graph containing cycles, which makes traditional
conflict clause learning impossible.

Our modifications to the unit propagation algorithm add
a significant amount of overhead. But as unit propaga-
tion is run after every decision, and most decisions do
not result in a contradiction, it may be prudent to run
our version of unit propagation only when a conflict has
been discovered using a version of the traditional algo-
rithm modified for speed rather than to support clause
learning.

Prioritizing clauses as we do in this paper may lead to
repeatedly using the same clauses to derive subsequent
conflict clauses. However, it should be possible to
count the number of times a clause is used in the deri-
vation of the conflict clause, and use this information in
the clause-ordering heuristic.

Many modern SAT solvers, TiniSAT excluded, delete
learned clauses when they cease being useful to save
processing time and space. They use a heuristic that
tracks how often the clause is used to determine which
clauses to delete. This information might be valuable in
crafting stronger clause-ordering heuristics.

Acknowledgments
Knot Pipatsrisawat – for several hours of explaining the
details of unit resolution and clause learning.
Dawn Chen – for support, help debugging the code, and
proofreading.

References
[1] Marques Silva, J.P. and K.A. Sakallah. Conflict

analysis in search algorithms for satisfiability. in
Proceedings of the Eighth IEEE International
Conference on Tools with Artificial Intelligence.
1996.

[2] Huang, J. A case for simple Sat solvers. Lecture
notes in computer science, 2007 – Springer.

[3] SAT Race 2006. http://fmv.jku.at/sat-race-2006/
[4] Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang,

L.; and Malik, S. 2001. Chaff: Engineering an ef-
ficient sat solver. In 39th Design Automation
Conference.

[5] Pipatsrisawat, K.; Darwiche A. 2008 A New
Clause Learning Scheme for Efficient Unsatisfi-
ability Proofs

[6] Eugene Goldberg, Yakov Novikov, BerkMin: A
fast and robust Sat-solver, Discrete Applied
Mathematics, Volume 155, Issue 12, SAT 2001,
the Fourth International Symposium on the The-
ory and Applications of Satisfiability Testing, 15
June 2007, Pages 1549-1561

[7] Luby, M.; Sinclair, A.; Zuckerman, D., "Optimal
speedup of Las Vegas algorithms," Theory and
Computing Systems, 1993., Proceedings of the
2nd Israel Symposium on the , vol., no., pp.128-
133, 7-9 Jun 1993

[8] Huang, J. The effect of restarts on the efficiency
of clause learning. In AAAI-06 Workshop on
Learning for Search (2006).

[9] L. Zhang, C. Madigan, M. Moskewicz, and S.
Malik. Efficient conflict driven learning in a Boo-
lean satisfiability solver. In Proceedings of the In-
ternational Conference on Computer Aided De-
sign (ICCAD), pages 279–285, 2001.

[10] Kibria, R. MidiSAT - An extension of MiniSAT.

