Literal-1ndependent Clause Processing for Unit Resolution

Trevor Standley andChu-Cheng Hsieh
Computer Science Department
University of California, Los Angeles
{tstand, chucheng}@cs.ucla.edu

Abstract

We present a new and substantially different urapp- Algorithm TINISAT
gation technique based on the two literal watcteswh 1 Toop
used in modern SAT solvers that allows for sigaifitty 2. if (literal = selectLiteral()) == nil
shorter leamed clauses. We have implemented our 3 ifr%‘ggazggjgg%ﬁ
method on top of TiniSAT 0.22 (a lightweight solver 5. repeat
written in C++). Benchmarks were run on instancesf 6. learnClause()
the 2005 SAT competition, and SAT race 2006, and re 7 if assertionLevel() == 0 then

lts show that our method learns clauses an avef 8 return UNSATISFIABLE
su o e . - g 9. if restartPoint() then
26% shorter than unmodified TiniSAT, resulting in a 10. backtrack(1)
average of 17% fewer decisions before a solution is 11 else)
f d 12. backtrack(assertionLevel())
ound. 13. until assertLearnedClause()

Introduction Figure 1. Pseudo-code of TiniSAT from [8]

Unit resolution is an important component in most

modern SAT solvers. It allows a solver to prune theTiniSAT consists of a main loop (Figure 1), whiatne

search space from an unruly to a manageable sige, atains each of the elements described below.

its ability to detect dead-ends in the search taae be

improved by conflict clause learning [1]. At every iteration, TiniSAT makes an assumptionubo
the value of one of the variablesseldctLiteral()).

The ability of a conflict clause to detect deadsdé- TiniSAT uses a decision heuristic to decide what as

pends in part on the size of the conflict clausea®r sumption to make, i.e., which variable and whatgal

clauses make stronger statements, and place tightgut it will always choose a variable the value dfioh

constraints on possible variable assignments. ™a g unit propagation has not yet discovered under tire c

of this paper is to devise a method of derivingrager rent set of decisions. If no such literal existerttthe

conflict clauses, and to explore alternatives ®stan- values of all literals have either been decidedaorihe

dard unit propagation algorithm. values have been discovered without a contradiction
and therefore the instance is satisfied.

We begin with a review of modern SAT solving meth-

ods focusing on the implementation details of TAIS In order to decide which literal to assume nexbi-Ti

the solver on which we have made our modificationsSAT uses a modification of the VSIDS heuristic. iTin

We move on to where our approach differs from tifat SAT starts by giving a score to every literal. Sfiec

TiniSAT, and describe in detail the changes we haveally, the initial value of each literal is the nbem of

made. We then describe our experiments, the resultglauses in which it occurs. Every time a clause is

and our analysis of what happened. We conclude withearned, the score of every literal in the classimére-

some suggestions for future work in this area. mented. However, in order to encourage TiniSAT to
o choose literals that are active in recently learned
TiniSAT clauses, the score of each literal is halved eu@§

TiniSAT[2] is a lightweight SAT solver written in€ conflicts. The score of a variable is the sum @f tho
to be readable and easy to modify. For this reasen, literals it can take on. The rationale is that vaties of
found TiniSAT to be the ideal testbed of our ideas. variables that are in many clauses are harder ter-de
mine, and variables that appear in recent conflict
We will now give an introduction to the structuré o clauses are nearer to the “heart” of the problenort
TiniSAT. TiniSAT is arranged in a way that is quite der to choose a variable, TiniSAT goes througlstai
typical of modern SAT solvers, and so the following recent conflict clauses and chooses the variatite tve
can be seen as an introduction to SAT solving im-ge highest score. If an assumption about the valuthef
eral. variable has been made before, TiniSAT picks theeva
that the variable was last assumed to have unless t
score of one of the values (as in positive or riegats

significantly higher than the score of the othéthkre

will only contain one version of any shared literdt is

are no clauses to choose from, TiniSAT falls baok o called merge resolution when the two clauses being
traditional VSIDS which can choose a variable eifen resolved share a literal, and merge resolutiomjgor-

it is not in a recently learned clause. This heigris

tant because it is the only way for the conflictude to

proposed by Jinbo[2], which is essentially a corabin become shorter.

tion of Chaff[5] and BerkMin[6].

TiniSAT, like most modern SAT solvers, processes th

TiniSAT then discovers as much as it can about thevatched clauses on an implied literal’'s watch iist
ramifications of the current decision by runningitun sequential order, and chooses watch lists to psoces

propagation ropagate(iteral)). Unit propagation

arbitrarily. The order in which clauses are proedsis

may find a contradiction in the current decision se important because it is only the first clause thgilies
qguence, and in this case the algorithm will do twoa particular literal or becomes empty that hasanch

things. First it will discover a clause that is iieg by
the original knowledge base and add it to the ddis$
in the hopes that it will make unit resolution maee
pable of finding a contradiction in the future. Sed,
the algorithm will backtrack.

Starting with chaff[4], SAT solvers perform unitopa-
gation in an efficient way. Namely, they use a tito

to participate in the derivation of the conflicauke.

Backtracking involves unmaking some number of re-
cent decisions that were discovered to be erroneous
Every learned clause contains one literal that inas
plied at the current decision level, the seconcésg
level in which a literal in the conflict clause wams-
plied is the backtrack level. It is safe to unmakede-

eral watch scheme. In order to tell when a clawse h cisions made after this decision, i.e., every sdebi-

become unit, SAT solvers “watch” two free literats

sion must cause inconsisteneycktrack) ~ Simply sets

each clause. Every variable has two watch liste (onthe value of every variable implied after the baatk
corresponding to the positive, and another cormedpo level to free.

ing to the negative) containing each of the cladses
which it is a watch variable. When the value of @ah
variable becomes set, the watch list for the liteppo-
site in sign is traversed, and each clause it conta

Intuitively, sometimes the decisions made by SAT
solvers lead it to a place in the decision treeratibe
solver can wander aimlessly for a large periodirokt

processed. When a clause is processed, at leasifoneln order to reduce the amount of time spent wanderi
its watch variables must have become negative (resolvers sometimes induce a restart to the veryninéug
solved) and so a new watch variable must be selétcte of the decision sequence. This is done using anest

possible. If it is not possible to find a suitalilee lit-

schedule, or restart policy.

eral in a clause then the clause has become unit (o

empty if both watch variables are resolved). Iflause
becomes unit, the literal it contains must be tihe,
variable’s value is set, and it is put onto a stegkhat
its watch list may be processed in order. Impliad-v
ables are given a pointer to the clause that becate
for conflict clause learning. It is only necessaoy

TiniSAT uses a well-known restart policy which was
proposed by Luby et al.[7] They were able to prove
optimality guarantees for their policy for many egpof
algorithms that have randomly distributed runtimes.
They showed that (1) it approximates the optiméicyo
within a logarithmic factor, and (2) it determindse

watch two literals because a clause cannot becarte u specific distribution of the runtime for differeptrob-

if two literals are not both false.

Upon detection of an inconsistency in the statehef
solver via unit resolution, solvers perform a serid

lem instances, and (3) no policy can be more than a
constant factor faster. Under Luby’'s policy, théveo
restarts as soon as some number of conflicts has oc
curred. In TiniSAT, the number is given by 512 mult

resolution steps to derive a clause implied by theplied by the following sequence: 1, 1, 2, 1, 1421, 1,
knowledge base. This is called the conflict clause2, 4, 8... Although the solver forgets its decisioits,

Solvers resolve clauses that became unit (callasores
or antecedents) with the empty clause until thévddr
clause only contains one literal from the curreatie
sion level. Remember that shorter conflict claugps

cally make stronger statements about the solutiad,
allow subsequent runs of unit resolution to detaeet
consistency faster. For this reason it is importanthe
antecedents to be short. It is also importantterante-
cedents to share literals; this is because thdversto

keeps the clauses it has learned.

Our Modifications
Ideally, every clause processed during the unipaga-
tion algorithm would be processed independentlthef
watched literals, and in an order that takes imtmant
our preference for short clauses that share Igefdtis
could also be used to encourage a contradicticangj
to be found more quickly.

def clause::unwatch(lit) 1 | def enqueueWatchList(lit, priorityQueue)
otherWatch = otherWatch(lit) 2 for i = 0 to wachList(lit).size()
3 watchedClause c
/li this clause’s the index in lit's watchlist 4 clit = lit
watchList(lit)[i] = watchList(lit).back() 5 c.index =i
watchList(lit).pop_back() 6 /I find the score by summing scores of
7 /I literals contained in this clause
/I clauses are stored as an array of literals 8 for literal in watchlist(lit)[i]
/I the first two literals in a clause are the 9 c.score += literal.score
/I watched literals. 10 /I reduce score by 220 * size of clause
swap out lit from watch position 11 /I to prioritize smaller clauses
12 c.score -= size(watchList(lit)[i]) << 20;
13 priorityQueue.push(c)
14 return
15
def propagate(lit) 16 | def propagate(lit)
lit.value = true 17 lit.value = true
18 priorityQueue.empty()
19
stack.push(lit) 20 enqueueWatchList(lit, priorityQueue)
21
while stack not empty: 22 while priorityQueue not empty:
23 ¢ = priorityQueue.pop()
lit = -stack.pop() 24 lit = c.lit
/I process watch list for lit 25 clause = watchList(lit)[c.index]
for clause in wachList(lit) 26
/I pick the second watch in the clause 27 /I pick the second watch in the clause
otherWatch = clause.otherWatch(lit) 28 otherWatch = clause.otherWatch(lit)
29
/I clause subsumed 30 /I clause subsumed
if set(otherWatch) continue 31 if set(otherwWatch) continue
32
/I find other watch 33 /I find other watch
newWatch = null 34 newWatch = null
for literal in clause.notWatched() 35 for literal in clause.notWatched()
if literal.value != false 36 if literal.value != false
newWatch = literal 37 newWatch = literal
38
if newWatch // suitable watch found 39 if newWatch // suitable watch found
clause.watch(newWatch) 40 clause.watch(newWatch)
clause.unwatch(lit) 41 clause.unwatch(lit)
else if free(otherWatch) // implication 42 else if free(otherWatch) // implication
otherWatch.value = true 43 otherWatch.value = true
otherWatch.antecedent = clause 44 otherWatch.antecedent = clause
stack.push(otherWatch); 45 enqueueWatchList(otherWatch,priorityQueue)
else if otherwWatch.value == false 46 else if otherwWatch.value == false
/I contradiction 47 /I contradiction
48
/I begins clause learning algorithm 49 /I begins clause learning algorithm
/I with the clause that became empty 50 /I with the clause that became empty
learnClause(clause) 51 learnClause(clause)
return 52 return

Figure 2. Pesudocode for TiniSAT’s unit propagation subiraut Figure 3. Pesudocode for the modification.

Figure 1 is the pseudocode for TiniSAT’s unit pg@a and encourage those literals to appear in multipke-
tion subroutine. Figure 2 is the pseudo-code ofapir cedents.
proach.
To that end, clauses are ranked first on their, sine
Recall that when running the unit propagation algo-second on the sum of the scores of their contditerd
rithm, SAT solvers typically process the watchdlisf als, where a literal’s score is the number of cauhat
implied literals completely before moving on to the contain the literal.
watch list of another implied literal. In contrastyr
approach involves using a priority queue of watchedVe believe that if clauses are picked that cortitén-
clauses. als that are common in all clauses, those litewls
also be common in clauses that are used to ddmwe t
We wish to process small clauses as quickly asildess conflict clause. Also, by simply biasing probalpdi
so that the antecedents of derived literals aseresdl as ~ with which literals are chosen, there will be léksr
possible. We also wish to encourage merge resalutio(those with high probability) that will be likelytap-
to take place during the derivation of the conflictpear multiple times in the derivation of a conflict
clause. Since we cannot tell a priori which literttie clause.
running derivation of the conflict clause will cai,
we attempt to guess which literals it is likelydmntain,

Every time a clause becomes unit, we add eachelau$SAT solved 106, and our modification solved 96. rEhe
in the appropriate watch list to the priority queue was a 20 minute time limit per instance. Althouglr o
Clauses on the priority queue are represented by method solved ten fewer problems than unmodified

structure that contains the implied literal thatbiing
watched, the position of the clause in the literafatch
list, and the clause’s score. The initial literak&tch
list is originally dumped into the priority queuefbre
the main loop.

TiniSAT, the results are promising.

Processing clauses in an order that encouraged smal
clauses to participate in the derivation of a donfl
clause seems to drastically decrease the sizeeafdh-

flict clauses eventually learned (to 74%). Thistuinn

The main loop consists of popping the most promisin cuts down the number of decisions the solver has to

watched clause from the priority queue, and praogss
that clause in pretty much the traditional way.

Complications

make before arriving at a solution. Since mergeltes
tions are more prevalent early in the decision erge
and our solver doesn’t make as many decisions, energ
resolution has been encouraged even though it would

One complication involves removing a clause from aappear that the average number of merge resolutions
literal’s watch list when another suitable watchs ha per conflict is somewhat constant.
been found. The above method requires an index into

the watch list of the watched variable. This camizele

available by using an index rather than a pointeerw
defining awatchedclause (line 5); however, if we were
to use the simple unwatching function above, tlkein

The overhead involved in this implementation of the
modification seems to be the reason for the laggeic-
tion of speed, but much of the overhead in our @npl
mentation is unnecessary. It should be possibkedoe

of the clause in the back would be changed. Beci#tusea clause when it is created instead of on theafig this

is in a priority queue, there is no way to finitd cor-
rect the error. Instead, we simply stase at the loca-
tion in the unwatched variable’s watch list, andret

the variable in a purge list for later purging (not

shown).

Also, while using a priority queue is simple, itpso-
hibitively expensive. Fortunately, the data we @eer-
ing has some special structure. We know that ctaoke
lower size must be ejected by the queue first. e ¢

would lead to a substantial decrease in overhead:-H
ever, the data structures that TiniSAT uses toestor
clauses would make this optimization cumbersome.

TiniSAT also benefits from implication lists forrzry
clauses[10]. This feature was turned off in our ifiod
cation to reduce the complexity of the code, batehs

no reason conceptually that this optimization isom-
patible with our modifications. Furthermore, thigtie
mization seems to drastically improve the speed of

therefore use an array of queues each of which onlyiniSAT.

stores clauses of a specific size. For examplemag
have an array of five priority queuegieuelo] stores
clauses of size Zyeue[1]

There are also many applications in which speetis

stores clauses of size 3, and the primary concern. For example, DPLL-like algo-

so on untilqueue4] , which stores all larger clauses. We rithms are used in the area of knowledge compitatio

can keep track of the smallest clause in the quaue,
eject from the appropriate queue first. Early ekper
ments showed that a maximum in efficiency is arodind
queues, and that this technique results in a gréze
40% speedup.

Since TiniSAT’s clause learning requires the stack
der for implied literals, we must keep track ofstls
well.

Experimental Results

Decisions Conflicts Restarts Merges Size of CC Time
TiniSAT 426021.5 | 59172.8 38.2 3.95 33.4 69.41
TiniSAT' | 356775.7 | 43619.2 30.2 4.00 24.8 | 151.22
0.83 0.73 0.79 1.01 0.74 2.17

Figure 3. Average results for the 93 problems solved by ottiers

and in this area the trace of the algorithm is dat&en
though the time to complete may be longer, the sfze
the resulting trace is shorter, which could be ingott.

Because our modification does not make as many deci
sions, and the average size of the generated confli
clause is small, our modification also uses sigaiitly
less memory than the original TiniSAT. This can be
important in situations when memory is a bottlenick
solving a problem.

Conclusion
We have introduced a new method for performing unit
resolution in SAT solvers based on the two litevatch
scheme that processes clauses independently. e hav
shown one way that this new freedom can be taken ad

TiniSAT was run alongside our modification on 168 vantage of by introducing a natural heuristic tecm-
SAT problems from SAT Race 2006, and the industriapany this method, and empirically shown that the-he

category of the 2005 SAT competition. Of these,i-Tin

ristic is effective at substantially reducing thesage

size of the learned conflict clause when a conttat
is reached. [1]
FutureWork
In [5], Pipatsrisawat et al. suggest learning lsiesing
clauses, i.e., those that have two variables at$iser-
tion level instead of only one. In order to makésth [2]
worthwhile, it is necessary that at least one gtefhe
resolution process used to derive the conflict sstale [3]
a merge resolution. Since our heuristic encouragep]
merge resolution, it may be even more powerful when
combined with this technique, however TiniSAT
doesn’t yet learn such clauses.

[5]
Having a strict ordering on clauses might not beese
sary, so it might be possible to get similar berefiith
less overhead by keeping clauses in some loose.orde [6]

It might not be necessary to order the clause. @mre
might be able to devise a way to simply updateathe
tecedent of a literal with a better clause. Theaaiay
of going about this, however, often results in itheli-

cation graph containing cycles, which makes traddil
conflict clause learning impossible.

[7]

Our modifications to the unit propagation algorithod
a significant amount of overhead. But as unit pgapa
tion is run after every decision, and most decisido
not result in a contradiction, it may be prudentria
our version of unit propagation only when a cotftias
been discovered using a version of the traditiahgb-
rithm modified for speed rather than to supporuséa
learning.

(8]

(9]

Prioritizing clauses as we do in this paper mayl lea
repeatedly using the same clauses to derive suestqu[10]
conflict clauses. However, it should be possible to
count the number of times a clause is used in #re d
vation of the conflict clause, and use this infotiorain

the clause-ordering heuristic.

Many modern SAT solvers, TiniSAT excluded, delete
learned clauses when they cease being useful ® sav
processing time and space. They use a heuristic tha
tracks how often the clause is used to determiniehwh
clauses to delete. This information might be valeat
crafting stronger clause-ordering heuristics.

Acknowledgments
Knot Pipatsrisawat — for several hours of explajrime
details of unit resolution and clause learning.
Dawn Chen — for support, help debugging the codé, a
proofreading.

References
Marques Silva, J.P. and K.A. Sakallah. Conflict
analysis in search algorithms for satisfiability. i
Proceedings of the Eighth IEEE International
Conference on Tools with Artificial Intelligence.
1996
Huang, J. A case for simple Sat solvers. Lecture
notes in computer science, 2007 — Springer.
SAT Race 2006. http://fmv.jku.at/sat-race-2006/
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang,
L.; and Malik, S. 2001. Chaff: Engineering an ef-
ficient sat solver.In 39th Design Automation
Conference.
Pipatsrisawat, K.; Darwiche A. 2008 A New
Clause Learning Scheme for Efficient Unsatisfi-
ability Proofs
Eugene Goldberg, Yakov Novikov, BerkMin: A
fast and robust Sat-solver, Discrete Applied
Mathematics, Volume 155, Issue 12, SAT 2001,
the Fourth International Symposium on the The-
ory and Applications of Satisfiability Testing, 15
June 2007, Pages 1549-1561
Luby, M.; Sinclair, A.; Zuckerman, D., "Optimal
speedup of Las Vegas algorithms," Theory and
Computing Systems, 1993., Proceedings of the
2nd Israel Symposium on the , vol., no., pp.128-
133, 7-9 Jun 1993
Huang, J. The effect of restarts on the efficiency
of clause learning. In AAAI-06 Workshop on
Learning for Search (2006).
L. Zzhang, C. Madigan, M. Moskewicz, and S.
Malik. Efficient conflict driven learning in a Boo-
lean satisfiability solver. In Proceedings of the |
ternational Conference on Computer Aided De-
sign (ICCAD), pages 279285, 2001.
Kibria, R. MidiSAT - An extension of MiniSAT.

