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Abstract 

We present a new and substantially different unit propa-
gation technique based on the two literal watch scheme 
used in modern SAT solvers that allows for significantly 
shorter learned clauses. We have implemented our 
method on top of TiniSAT 0.22 (a lightweight solver 
written in C++). Benchmarks were run on instances from 
the 2005 SAT competition, and SAT race 2006, and re-
sults show that our method learns clauses an average of 
26% shorter than unmodified TiniSAT, resulting in an 
average of 17% fewer decisions before a solution is 
found. 

 
Introduction 

Unit resolution is an important component in most 
modern SAT solvers. It allows a solver to prune the 
search space from an unruly to a manageable size, and 
its ability to detect dead-ends in the search tree can be 
improved by conflict clause learning [1]. 
 
The ability of a conflict clause to detect dead-ends de-
pends in part on the size of the conflict clause. Smaller 
clauses make stronger statements, and place tighter 
constraints on possible variable assignments. The goal 
of this paper is to devise a method of deriving stronger 
conflict clauses, and to explore alternatives to the stan-
dard unit propagation algorithm. 
 
We begin with a review of modern SAT solving meth-
ods focusing on the implementation details of TiniSAT, 
the solver on which we have made our modifications. 
We move on to where our approach differs from that of 
TiniSAT, and describe in detail the changes we have 
made. We then describe our experiments, the results, 
and our analysis of what happened. We conclude with 
some suggestions for future work in this area. 
 

TiniSAT 
TiniSAT[2] is a lightweight SAT solver written in C++ 
to be readable and easy to modify. For this reason, we 
found TiniSAT to be the ideal testbed of our ideas. 
 
We will now give an introduction to the structure of 
TiniSAT. TiniSAT is arranged in a way that is quite 
typical of modern SAT solvers, and so the following 
can be seen as an introduction to SAT solving in gen-
eral. 
 

  
TiniSAT consists of a main loop (Figure 1), which con-
tains each of the elements described below. 
 
At every iteration, TiniSAT makes an assumption about 
the value of one of the variables  (selectLiteral() ). 
TiniSAT uses a decision heuristic to decide what as-
sumption to make, i.e., which variable and what value, 
but it will always choose a variable the value of which 
unit propagation has not yet discovered under the cur-
rent set of decisions. If no such literal exists then the 
values of all literals have either been decided on, or the 
values have been discovered without a contradiction, 
and therefore the instance is satisfied.  
 
In order to decide which literal to assume next, Tini-
SAT uses a modification of the VSIDS heuristic. Tini-
SAT starts by giving a score to every literal. Specifi-
cally, the initial value of each literal is the number of  
clauses in which it occurs. Every time a clause is 
learned, the score of every literal in the clause is incre-
mented.  However, in order to encourage TiniSAT to 
choose literals that are active in recently learned 
clauses, the score of each literal is halved every 128 
conflicts. The score of a variable is the sum of the two 
literals it can take on. The rationale is that the values of 
variables that are in many clauses are harder to deter-
mine, and variables that appear in recent conflict 
clauses are nearer to the “heart” of the problem. In or-
der to choose a variable, TiniSAT goes through a list of 
recent conflict clauses and chooses the variable with the 
highest score. If an assumption about the value of the 
variable has been made before, TiniSAT picks the value 
that the variable was last assumed to have unless the 
score of one of the values (as in positive or negative) is 

Algorithm TINISAT 
1.  loop 
2.    if (literal = selectLiteral()) == nil 
3.      return SATISFIABLE 
4.    if !propagate(literal) 
5.      repeat 
6.        learnClause() 
7.        if assertionLevel() == 0 then 
8.          return UNSATISFIABLE 
9.        if restartPoint() then 
10.          backtrack(1) 
11.        else 
12.          backtrack(assertionLevel()) 
13.      until assertLearnedClause() 

Figure 1. Pseudo-code of TiniSAT from [8] 



significantly higher than the score of the other. If there 
are no clauses to choose from, TiniSAT falls back on 
traditional VSIDS which can choose a variable even if 
it is not in a recently learned clause. This heuristic is 
proposed by Jinbo[2], which is essentially a combina-
tion of Chaff[5] and BerkMin[6]. 
 
TiniSAT then discovers as much as it can about the 
ramifications of the current decision by running unit 
propagation (propagate(literal) ). Unit propagation 
may find a contradiction in the current decision se-
quence, and in this case the algorithm will do two 
things. First it will discover a clause that is implied by 
the original knowledge base and add it to the clause list 
in the hopes that it will make unit resolution more ca-
pable of finding a contradiction in the future. Second, 
the algorithm will backtrack. 
 
Starting with chaff[4], SAT solvers perform unit propa-
gation in an efficient way. Namely, they use a two lit-
eral watch scheme. In order to tell when a clause has 
become unit, SAT solvers “watch” two free literals in 
each clause. Every variable has two watch lists (one 
corresponding to the positive, and another correspond-
ing to the negative) containing each of the clauses for 
which it is a watch variable. When the value of a watch 
variable becomes set, the watch list for the literal oppo-
site in sign is traversed, and each clause it contains is 
processed. When a clause is processed, at least one of 
its watch variables must have become negative (re-
solved) and so a new watch variable must be selected if 
possible. If it is not possible to find a suitable free lit-
eral in a clause then the clause has become unit (or 
empty if both watch variables are resolved). If a clause 
becomes unit, the literal it contains must be true, the 
variable’s value is set, and it is put onto a stack so that 
its watch list may be processed in order. Implied vari-
ables are given a pointer to the clause that became unit 
for conflict clause learning.  It is only necessary to 
watch two literals because a clause cannot become unit 
if two literals are not both false.  
 
Upon detection of an inconsistency in the state of the 
solver via unit resolution, solvers perform a series of 
resolution steps to derive a clause implied by the 
knowledge base. This is called the conflict clause. 
Solvers resolve clauses that became unit (called reasons 
or antecedents) with the empty clause until the derived 
clause only contains one literal from the current deci-
sion level. Remember that shorter conflict clauses typi-
cally make stronger statements about the solution, and 
allow subsequent runs of unit resolution to detect in-
consistency faster. For this reason it is important for the 
antecedents to be short. It is also important for the ante-
cedents to share literals; this is because the resolvent 

will only contain one version of any shared literals. It is 
called merge resolution when the two clauses being 
resolved share a literal, and merge resolution is impor-
tant because it is the only way for the conflict clause to 
become shorter. 
 
TiniSAT, like most modern SAT solvers, processes the 
watched clauses on an implied literal’s watch list in 
sequential order, and chooses watch lists to process 
arbitrarily. The order in which clauses are processed is 
important because it is only the first clause that implies 
a particular literal or becomes empty that has a chance 
to participate in the derivation of the conflict clause. 
 
Backtracking involves unmaking some number of re-
cent decisions that were discovered to be erroneous. 
Every learned clause contains one literal that was im-
plied at the current decision level, the second highest 
level in which a literal in the conflict clause was im-
plied is the backtrack level. It is safe to unmake all de-
cisions made after this decision, i.e., every such deci-
sion must cause inconsistency. backtrack()  simply sets 
the value of every variable implied after the backtrack 
level to free. 
 
Intuitively, sometimes the decisions made by SAT 
solvers lead it to a place in the decision tree where the 
solver can wander aimlessly for a large period of time. 
In order to reduce the amount of time spent wandering, 
solvers sometimes induce a restart to the very beginning 
of the decision sequence. This is done using a restart 
schedule, or restart policy. 
 
TiniSAT uses a well-known restart policy which was 
proposed by Luby et al.[7] They were able to prove 
optimality guarantees for their policy for many types of  
algorithms that have randomly distributed runtimes. 
They showed that (1) it approximates the optimal policy 
within a logarithmic factor, and (2) it determines the 
specific distribution of the runtime for different prob-
lem instances, and (3) no policy can be more than a 
constant factor faster. Under Luby’s policy, the solver 
restarts as soon as some number of conflicts has oc-
curred. In TiniSAT, the number is given by 512 multi-
plied by the following sequence: 1, 1, 2, 1, 1, 2, 4, 1, 1, 
2, 4, 8… Although the solver forgets its decisions, it 
keeps the clauses it has learned. 
 

Our Modifications 
Ideally, every clause processed during the unit propaga-
tion algorithm would be processed independently of the 
watched literals, and in an order that takes into account 
our preference for short clauses that share literals. This 
could also be used to encourage a contradiction (if any) 
to be found more quickly. 

 



Figure 1 is the pseudocode for TiniSAT’s unit propaga-
tion subroutine. Figure 2 is the pseudo-code of our ap-
proach. 
 
Recall that when running the unit propagation algo-
rithm, SAT solvers typically process the watch lists of 
implied literals completely before moving on to the 
watch list of another implied literal. In contrast, our 
approach involves using a priority queue of watched 
clauses. 
 
We wish to process small clauses as quickly as possible 
so that the antecedents of derived literals are as small as 
possible. We also wish to encourage merge resolution 
to take place during the derivation of the conflict 
clause. Since we cannot tell a priori which literals the 
running derivation of the conflict clause will contain, 
we attempt to guess which literals it is likely to contain, 

and encourage those literals to appear in multiple ante-
cedents.  
 
To that end, clauses are ranked first on their size, and 
second on the sum of the scores of their contained liter-
als, where a literal’s score is the number of clauses that 
contain the literal. 
 
We believe that if clauses are picked that contain liter-
als that are common in all clauses, those literals will 
also be common in clauses that are used to derive the 
conflict clause. Also, by simply biasing probabilities 
with which literals are chosen, there will be literals 
(those with high probability) that will be likely to ap-
pear multiple times in the derivation of a conflict 
clause. 
 

def clause::unwatch(lit) 
  otherWatch = otherWatch(lit) 
  
  //i this clause’s the index in lit’s watchlist 
  watchList(lit)[i] = watchList(lit).back() 
  watchList(lit).pop_back() 
   
  // clauses are stored as an array of literals 
  // the first two literals in a clause are the 
  // watched literals. 
  swap out lit from watch position 
 
 
 
 
def propagate(lit) 
  lit.value = true 
 
 
  stack.push(lit) 
 
  while stack not empty: 
     
    lit = -stack.pop()  
    // process watch list for lit 
    for clause in wachList(lit) 
      // pick the second watch in the clause 
      otherWatch = clause.otherWatch(lit) 
 
      // clause subsumed 
      if set(otherWatch) continue  
       
      // find other watch  
      newWatch = null 
      for literal in clause.notWatched() 
      if literal.value != false 
        newWatch = literal 
    
      if newWatch // suitable watch found 
        clause.watch(newWatch) 
        clause.unwatch(lit) 
      else if free(otherWatch) // implication 
        otherWatch.value = true 
        otherWatch.antecedent = clause 
        stack.push(otherWatch); 
      else if otherWatch.value == false 
        // contradiction 
         
        // begins clause learning algorithm 
        // with the clause that became empty 
        learnClause(clause) 
        return 
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def enqueueWatchList(lit, priorityQueue) 
  for i = 0 to wachList(lit).size() 
    watchedClause c 
    c.lit = lit 
    c.index = i 
    // find the score by summing scores of  
    // literals contained in this clause 
    for literal in watchlist(lit)[i] 
      c.score += literal.score 
    // reduce score by 2^20 * size of clause 
    // to prioritize smaller clauses 
    c.score -= size(watchList(lit)[i]) << 20; 
    priorityQueue.push(c) 
  return 
 
def propagate(lit) 
  lit.value = true 
  priorityQueue.empty() 
   
  enqueueWatchList(lit, priorityQueue) 
     
  while priorityQueue not empty: 
    c = priorityQueue.pop() 
    lit = c.lit 
    clause = watchList(lit)[c.index] 
   
    // pick the second watch in the clause 
    otherWatch = clause.otherWatch(lit) 
 
    // clause subsumed 
    if set(otherWatch) continue  
       
    // find other watch  
    newWatch = null 
    for literal in clause.notWatched() 
    if literal.value != false 
      newWatch = literal 
  
    if newWatch // suitable watch found 
      clause.watch(newWatch) 
      clause.unwatch(lit) 
    else if free(otherWatch) // implication 
      otherWatch.value = true 
      otherWatch.antecedent = clause 
      enqueueWatchList(otherWatch,priorityQueue) 
    else if otherWatch.value == false 
      // contradiction 
       
      // begins clause learning algorithm 
      // with the clause that became empty 
      learnClause(clause) 
      return 

Figure 2. Pesudocode for TiniSAT’s unit propagation subroutine.  Figure 3. Pesudocode for the modification. 
 



Every time a clause becomes unit, we add each clause 
in the appropriate watch list to the priority queue. 
Clauses on the priority queue are represented by a 
structure that contains the implied literal that is being 
watched, the position of the clause in the literal’s watch 
list, and the clause’s score. The initial literal’s watch 
list is originally dumped into the priority queue before 
the main loop.  
 
The main loop consists of popping the most promising 
watched clause from the priority queue, and processing 
that clause in pretty much the traditional way. 
 

Complications 
One complication involves removing a clause from a 
literal’s watch list when another suitable watch has 
been found. The above method requires an index into 
the watch list of the watched variable. This can be made 
available by using an index rather than a pointer when 
defining a watchedClause  (line 5); however, if we were 
to use the simple unwatching function above, the index 
of the clause in the back would be changed. Because it 
is in a priority queue, there is no way to find it and cor-
rect the error. Instead, we simply store null  at the loca-
tion in the unwatched variable’s watch list, and store 
the variable in a purge list for later purging (not 
shown). 
 
Also, while using a priority queue is simple, it is pro-
hibitively expensive. Fortunately, the data we are order-
ing has some special structure. We know that clauses of 
lower size must be ejected by the queue first. We can 
therefore use an array of queues each of which only 
stores clauses of a specific size. For example, we may 
have an array of five priority queues. queue[0]  stores 
clauses of size 2, queue[1]  stores clauses of size 3, and 
so on until queue[4] , which stores all larger clauses. We 
can keep track of the smallest clause in the queue, and 
eject from the appropriate queue first. Early experi-
ments showed that a maximum in efficiency is around 4 
queues, and that this technique results in a greater than 
40% speedup. 
 
Since TiniSAT’s clause learning requires the stack or-
der for implied literals, we must keep track of this as 
well. 
 

Experimental Results 
 Decisions Conflicts Restarts Merges Size of CC Time 

TiniSAT 426021.5 59172.8 38.2 3.95 33.4 69.41 
TiniSAT’ 356775.7 43619.2 30.2 4.00 24.8 151.22 
ratio 0.83 0.73 0.79 1.01 0.74 2.17 
Figure 3. Average results for the 93 problems solved by both solvers 

 
TiniSAT was run alongside our modification on 168 
SAT problems from SAT Race 2006, and the industrial 
category of the 2005 SAT competition. Of these, Tini-

SAT solved 106, and our modification solved 96. There 
was a 20 minute time limit per instance. Although our 
method solved ten fewer problems than unmodified 
TiniSAT, the results are promising. 
 
Processing clauses in an order that encourages small 
clauses to participate in the derivation of a conflict 
clause seems to drastically decrease the size of the con-
flict clauses eventually learned (to 74%). This in turn 
cuts down the number of decisions the solver has to 
make before arriving at a solution. Since merge resolu-
tions are more prevalent early in the decision sequence 
and our solver doesn’t make as many decisions, merge 
resolution has been encouraged even though it would 
appear that the average number of merge resolutions 
per conflict is somewhat constant. 
 
The overhead involved in this implementation of the 
modification seems to be the reason for the large reduc-
tion of speed, but much of the overhead in our imple-
mentation is unnecessary. It should be possible to score 
a clause when it is created instead of on the fly, and this 
would lead to a substantial decrease in overhead. How-
ever, the data structures that TiniSAT uses to store 
clauses would make this optimization cumbersome. 
 
TiniSAT also benefits from implication lists for binary 
clauses[10]. This feature was turned off in our modifi-
cation to reduce the complexity of the code, but there is 
no reason conceptually that this optimization is incom-
patible with our modifications. Furthermore, this opti-
mization seems to drastically improve the speed of 
TiniSAT. 
 
There are also many applications in which speed is not 
the primary concern. For example, DPLL-like algo-
rithms are used in the area of knowledge compilation, 
and in this area the trace of the algorithm is saved. Even 
though the time to complete may be longer, the size of 
the resulting trace is shorter, which could be important. 
 
Because our modification does not make as many deci-
sions, and the average size of the generated conflict 
clause is small, our modification also uses significantly 
less memory than the original TiniSAT. This can be 
important in situations when memory is a bottleneck in 
solving a problem. 

 
Conclusion 

We have introduced a new method for performing unit 
resolution in SAT solvers based on the two literal watch 
scheme that processes clauses independently. We have 
shown one way that this new freedom can be taken ad-
vantage of by introducing a natural heuristic to accom-
pany this method, and empirically shown that the heu-
ristic is effective at substantially reducing the average 



size of the learned conflict clause when a contradiction 
is reached.  
 

Future Work 
In [5], Pipatsrisawat et al. suggest learning bi-asserting 
clauses, i.e., those that have two variables at the asser-
tion level instead of only one. In order to make this 
worthwhile, it is necessary that at least one step in the 
resolution process used to derive the conflict clause be 
a merge resolution. Since our heuristic encourages 
merge resolution, it may be even more powerful when 
combined with this technique, however TiniSAT 
doesn’t yet learn such clauses. 
 
Having a strict ordering on clauses might not be neces-
sary, so it might be possible to get similar benefits with 
less overhead by keeping clauses in some loose order. 
 
It might not be necessary to order the clauses at all. One 
might be able to devise a way to simply update the an-
tecedent of a literal with a better clause. The naïve way 
of going about this, however, often results in the impli-
cation graph containing cycles, which makes traditional 
conflict clause learning impossible. 
 
Our modifications to the unit propagation algorithm add 
a significant amount of overhead. But as unit propaga-
tion is run after every decision, and most decisions do 
not result in a contradiction, it may be prudent to run 
our version of unit propagation only when a conflict has 
been discovered using a version of the traditional algo-
rithm modified for speed rather than to support clause 
learning. 
 
Prioritizing clauses as we do in this paper may lead to 
repeatedly using the same clauses to derive subsequent 
conflict clauses. However, it should be possible to 
count the number of times a clause is used in the deri-
vation of the conflict clause, and use this information in 
the clause-ordering heuristic. 
 
Many modern SAT solvers, TiniSAT excluded, delete 
learned clauses when they cease being useful to save 
processing time and space. They use a heuristic that 
tracks how often the clause is used to determine which 
clauses to delete. This information might be valuable in 
crafting stronger clause-ordering heuristics. 
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