
Infra: Structure All the Way Down
Structured Data as a Visual Programming Language

Christopher Hall
Computer Science

UCSB
USA

chall01@cs.ucsb.edu

Trevor Standley
Computer Science

Stanford
USA

tstand@cs.stanford.edu

Tobias Hollerer
Computer Science

UCSB
USA

holl@cs.ucsb.edu

Abstract
We present Infra, a new baseline medium for representing
data. With Infra, arbitrarily-complex structured data can be
encoded, viewed, edited, and processed, all while remaining
in an efficient non-textual form. It is suitable for the full
range of information modalities, from free-form input, to
compact schema-conforming structures. With its own equiv-
alent of a text editor and text-field widget, Infra is designed
to target the domain currently dominated by flat charac-
ter strings while simultaneously enabling the expression of
sub-structure, inter-reference, dynamic dependencies, ab-
straction, computation, and context (metadata).

Existing metaformats fit neatly into two categories. They
are either textual for human readability (such as XML and
JSON) or binary for compact serialization (such as Thrift
and Protocol Buffers). In contrast, Infra unifies those two
paradigms. In order to have the desirable properties of binary
formats, Infra has no textual representation. And yet, it is
designed to be easily read and authored by end-users.

We show how the organization Infra brings to data makes
a new non-textual programming paradigm viable. Programs
that modify data can now be embedded into the data it-
self. Furthermore, these programs can often be authored by
demonstration. We argue that Infra can be used to improve
existing software projects and that bringing direct authoring
and human readability to a binary data paradigm could have
rippling ramifications on the computing landscape.

CCS Concepts • Software and its engineering→ Data
types and structures; Visual languages; Programming by
example;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133852

Keywords human-readability, metaformat, structure edit-
ing, end-user development
ACM Reference Format:
Christopher Hall, Trevor Standley, and Tobias Hollerer. 2017. Infra:
Structure All the Way Down: Structured Data as a Visual Program-
ming Language. In Proceedings of 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!’17). ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3133850.3133852

1 Introduction
Infra aims to make data more powerful and easier to deal
with for both humans and computers. All types of data can be
viewed, edited, processed, transferred, and stored entirely in
Infra. Therefore, developers, runtimes, and end-users could
theoretically share a common foundational medium across
the computing landscape.
Infra is composed of a novel encoding and a novel type

of editor/browser. These two components are intended to
supplant the use cases of text encodings and text editors
respectively, and since the encoding is compact binary, it
also addresses the needs of transfer formats. Infra editors
make reading and writing Infra’s binary metaformat simple
for end-users, and can even style the presentation and taylor
editing in response to metadata, resembling a Web Browser
or IDE. Beyond the common metaformat features, Infra’s
encoding includes three critical primitives: Metadata, Free,
and Patch.

Metadata allows any data element, including other meta-
data, to be decorated with arbitrary Infra information to add
context. For example, metadata is useful for providing IDs to
support referencing values by name, style markup to assist
presentation in an editor, or schema/type info to constrain
or validate data.

Free allows encoded information to contain unallocated
memory regions. This can be useful for aligning data to
fixed-widths or improving the efficiency of localized edits to
large structures on disk.

Patch elements are programs that can inline another In-
fra object and optionally modify the shallow copy, forming
a generalization of graphs. This primitive turns out to be
a powerful building block toward general computation in

https://doi.org/10.1145/3133850.3133852
https://doi.org/10.1145/3133850.3133852

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Figure 1. A toy data structure represented as a tree (Left).
The data encoded in three textual formats, and Infra (Right).

the domain of data metaprogramming. In many situations,
Patches and the Infra-encoded statements within them, can
be conveniently authored indirectly via programming by
demonstration.

This paper serves as an introduction of the ideas behind
Infra. For a more comprehensive white-paper specification,
source repositories, executables, video demonstrations, and
tutorials, we invite you to visit Infra-Structure.org.

1.1 Motivation
Printable character codes are the sole building blocks of
source code files, command line languages, form fields, Web
formats (HTTP, URL, HTML, JSON, CSS) and all other “human-
readable” formats. This is due more to the fact that early
computers used electromechanical typewriters to interface
with humans than because it is the only workable paradigm.
Though all CPUs and runtime data-structures rely on binary-
encoded quantities to structure information for random ac-
cess, formats that need to be able to have a direct relationship
with users are stuck with essentially one option - encoding
their structure indirectly via contrived patterns of character
codes. This is unfortunate because, text, as a UI paradigm,
comes not only with compromises to efficiency, but function-
ality in general.
An entire class of problems with text arise from syntax.

Editing structured data within text requires a fixed and often
limited syntax riddled with reserved control characters. Not
only does this limit the allowed schema of the data, but it re-
quires that users be familiar with the syntactic elements used
to control the structure of the data. Furthermore, syntactic
elements, such as escaping, and the need for an unambiguous
grammar, limit the readability of the data. With Infra, syntax
is abstract, and structure is communicated graphically as
each editor sees fit for the particular context.

2 Infra: Human and Machine Friendly
Figure 1 is a side-by-side comparison of some structured
data expressed equivalently in four different languages. This
is a toy example engineered to show off a range of Infra’s
element types.

Figure 2. The byte structure of an encoded Infra segment.

Infra provides structured scaffolding for holding data, but
it does not attempt to invent a new character encoding, so
‘fish’ and ‘red’ are encoded as UTF8 strings. On the other
hand, ‘True’ is directly encoded as a boolean value, and
is shown in blue. Typical formats communicate structure
using characters such as ‘[’ and ‘(’. Infra communicates the
abstract syntax present in the data using graphical elements.
For example, the span of lists is indicated by a blue line above
the items it contains.
We will continue working with this example throughout

this section.

2.1 The Encoding
Infra’s metaformat encoding consists of a sequence of ‘seg-
ments’, each made of a header byte and a body of variable
length. The header byte indicates the type of the segment and
the length of its body. This pattern is sometimes called type-
length-value, tag-length-value, or key-length-value. Due in
part to its simplicity and processing efficiency, type-length-
value is a common paradigm, used by many binary file for-
mats such as Portable Network Graphics (PNG) [4], Audio
Video Interleave (AVI), Matlab’s MAT, Protocol Buffers [8],
MessagePack [12], and most modes of the complex ASN.1
[16] format. The finer details vary among these formats, but
the most significant decision that differentiates the utility
of these formats is the set of first-order primitives, or base
types, that they define.

We define 13 base types that support direct authoring and
are sufficient to enable a general set of applications. Only
half a byte is needed to account for 13 base types (plus 3
unallocated). Segment headers can be a single byte when
body lengths are no longer than 14 bytes. When the body
length is greater than 14 bytes, additional bytes must be
used to indicate the length. The value of 15 is used to signal
this, and the header byte is followed by a variable length
unsigned integer encoding. We find Dluglosz’ encoding [17]
to be efficient and well-designed for this purpose. This is the
encoding used for VLIs in the ZIP2 format.

2.2 Direct Authoring by End Users
With Infra, our first priority is supporting interactive au-
thoring by end users. An Infra editor aims to fill the same
role in computing that text editors and text-field widgets

http://infra-structure.org

Infra: Structure All the Way Down Onward!'17, October 25�27, 2017, Vancouver, Canada

Figure 3. Infra's 13 segment types.

Figure 4. Infra's byte encoding of the data structure shown
in hexadecimal.

currently play. Like a text editor, which tries to be as adept
and general-purpose as possible when it comes to enabling
users to view and manipulate a bu�er of character codes,
an Infra editor tries to make authoring structured data easy.
This includes having mechanisms to facilitate the authoring
of spans, quantities, references, metadata, and padding.

Using an Infra editor feels like using a text editor. Unlike
text editors, however, Infra editors have the opportunity
to add useful structure as users type. Users can type their
intended structure along with their content. For example,
pressing `spacebar' between words defaults to tokenizing
the text into lists of strings. Furthermore, recognizable �elds
such as numbers can be parsed on-the-spot and converted
into the appropriate Infra element type (such as Floating-
point, which is binary-encoded)1.

1 To get a feel for what editing Infra is like, please take a moment to watch
two short videos at the following links. Transcripts of the video demos are
provided in appendices A and B.
Video 1 h�ps://youtu.be/L8VpCCIxuME(� 3 min)
Video 2 h�ps://youtu.be/8k6n1m4leQo(� 2 min)

3 Lists and Keyed Lists
A list is a container to group zero or more data structures
together. In our prototype editor, lists are represented simply
as a line spanning over the items it contains. Lists can contain
elements of any type, including other lists. In fact, trees can
be built using lists of lists. Unlike text editors, which edit
�at character arrays, Infra editors are designed to work well
with hierarchical data.

In the above example, `quick', `brown', and `fox' are grouped
together in a List. `lazy' and `dog' are within another List.
`The', `jumped', `over', and `the' are at the root level.

The selection cursor can also be hierarchical in order to
edit at any level of granularity present in the data's structure.
In addition to moving the cursor between siblings, a central
user-interface action is to move the selection down to a child
or up to a parent container.

In the above �gure, the top row depicts selection of the
second element as a whole. Moving the cursordownor in
results in the second row, where `quick' is selected, and
moving the cursor to the right would now select siblings of
`quick' as opposed to siblings of the List (i.e. `jumped'). As
seen in the third row, the cursor can be movedin again to
operate at the character level in the familiar way.

Any tree can be displayed as a column-aligned table.

https://youtu.be/L8VpCCIxuME

Onward!'17, October 25�27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Keyed List is a variant ofList that associates the �rst
child with the container itself. This is similar to the concept
of a key-value pair where the �rst child is taken as the key,
except Keyed Lists can have any number of values. Keyed
nodes are also similar to Lisp's S-Expressions and are used
to encode Patch instructions, which we describe further in
the chapter on Patch.

Our prototype editor displays Keyed Lists in either of
two visual styles: a parentheses-like style or a colon-like
style. Since it is only a presentation layer decision, the user
has both on hand. The following �gure compares the visual
di�erences between Lists and Keyed Lists of zero through
three items respectively.

We �nd that the colon-like style is more appealing for
when there are exactly two items in the Keyed List (including
the key), i.e. A:B. But we �nd that the parentheses-like style
is generally less visually ambiguous for cases of fewer or
greater than two items total. (To be clear, such ambiguities
would be strictly user-interface-level issues, not encoding-
level ambiguity.) In our �gures, you will �nd that we mix the
use of the two styles for best readability on a case-by-case
basis.

4 Metadata
In Infra, metadata can be associated with any element, in-
cluding other metadata. Metadata can be laid out in various
ways or selectively hidden. In our prototype editor, metadata
is shown in a smaller font over the element it is associated
with. The �rst tier of elements within a metadata container
are Keyed Lists so that all metadata `statements' are associ-
ated with some language identi�er. This not only provides
a means to anchor interpretation of the metadata to some
recognizable semantics, but also to allow any number of
metadata layers to coexist on the same data node. If no meta-
data exists on a node, then the entire container is simply
absent from the encoding. The capacity to have metadata
costs nothing if it is not used.

There are two exceptions to the rule of metadata items
being Keyed Lists:

� a UTF8 element found as a direct child of a Metadata
node is taken to be `ID' metadata, i.e. shorthand for
the Keyed ListID:string.

� an Integer element found as a direct child of a Metadata
node is taken to be `UID' metadata, i.e. shorthand for
the Keyed ListUID:number.

In the following example, metadata has been authored
onto the strings `fox' and `dog'. The metadata values are
keyed as `adj' markup using Keyed Lists.

This is equivalent to viewing the following HTML in a text
editor (with HTML-speci�c syntax highlighting):

However, this HTML is malformed because repeated at-
tribute tags are not supported. In practice, �quick� and �brown�
would have to be combined into one value using a one-o�
syntax scheme to indirectly retain their boundaries. At that
point, the HTML parser, syntax highlighting, and editor as-
sistance stop helping, and custom parsing must be added
wherever the values are used. Note that HTML attributes
cannot themselves also have attributes (no recursive meta-
data).

4.1 Data-Driven Presentation

One of the many uses for metadata is to hint to Infra edi-
tors/browsers what abstractions are appropriate when dis-
playing a particular piece of data.

On the left side of the �gure above is a byte array of size
three displayed in hexadecimal by the editor. On the right
side is the same element after the user added `format' meta-
data. As it happens, this editor recognizes `format' markup,
and the value `RGB' gives the editor con�dence to instead
display the byte array as a color swatch, which can even be
interacted with as a color picker, making editing the value
much more intuitive.

Our prototype editor also supports a subset of the CSS
standard, which makes use of color values, so let us combine
this example with the previous one. In this scenario, the same

Infra: Structure All the Way Down Onward!'17, October 25�27, 2017, Vancouver, Canada

Figure 5. Top: editable Infra. Bottom: Editable HTML.

metadata exists on the color value in the �background color�
property, which happens to itself be metadata. (The `format'
metadata is not shown here because it is at least two levels
removed from the current position of the selection cursor.
Moving the cursor to the �rst metadata level will expand it.)

There are several noteworthy aspects to this structure. Sev-
eral grammatical constraints are relaxed relative to typical
CSS due to Infra circumventing the bottlenecks of a tokenizer.
The style property names can have spaces in them, rather
than being forced to use hyphens to separate words. The
byte encoding of the color value is in binary, which is more
compact than �#�9212� by a factor of three and moves the
parsing to author time rather than render time. As we will
explore later, Infra encodings can also use its Patch base type
and metadata layers to bring string de-duplication and value
computations to CSS or any other application.

If an editor displays metadata layers in a separate panel
on the side, or the user toggles o� the display of metadata
entirely, the rendering of Infra with style markup will re-
semble rendered HTML yet remain editable. For a visual
comparison, see Figure 5.

4.2 Metadata Association Rules in the Encoding

Metadata segments associate with the segment immediately
following it in the stream, skipping segments of type Free.
Metadata can be associated with other metadata with no
issue (meta-metadata).

If the last segment in a span is metadata, it associates with
its container. If it is in the 'top level', it is treated as metadata
for the tree itself.

4.3 Schemas

We �nd it useful to de�ne an optional system for ensuring
that data conforms to a speci�ed type de�nition. The meta-
data channels `schema' and `child-schema' and are de�ned
for this purpose. Metadata in the `schema' channel is treated
as an exemplar constraining the allowed shape of the data.
Likewise, when `child-schema' metadata occurs on a list, the
list's children are constrained to take the shape of the ex-
emplar. These constraints, as well as the defaults de�ned by
the exemplar, help editors to provide context-aware editing
functionality, such as auto-complete.

5 Case Study 1: URL Syntax
Let us explore a hypothetical alternative reality where com-
puting's text infrastructure never consisted of only charac-
ters codes, and was built up around a parametrized syntax
such as Infra. The UI widgets used for everyday tokens of
input/output (such as Text Fields) would be Infra editor wid-
gets and literacy around using keyboards would think in
terms of authoring structure along with values. In this sec-
tion, we explore the e�ect this would have on the nature of
computing by focusing on an everyday unit of structured
information - a URL.

The following URL is a link provided by a Google search
result. It is the link to the Wikipedia article on Uniform
Resource Locator, but the actual URL is a redirect through
Google's servers for accounting purposes. This kind of URL
is chosen because it is representative of complex stateful
URLs as well as the fact that it contains a URL inside itself.

Note that this URL is not very readable, and that the em-
bedded URL is escaped and does not work if copied to a
browser address bar as is. The bulk of the characters in URLs
like this are Base64-encoded bit strings. Base64 encoding
is born out of the fact that human-readable formats are un-
friendly to binary data, and in the web world, there is even
further need for compromises to encoding in URLs, to avoid
having to escape plus and forward slash characters.

Onward!'17, October 25�27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Now let us jump to looking at how URLs could have
formed di�erently if Infra boxes existed before text boxes
did. Eight notable improvements are listed after the image.

� The elements of a domain name do not have to be
separated by punctuation. It can simply be a list.

� This applies the same way to the path component of a
URL.

� The query �elds are key-value pairs and can be grouped
together.

� Numbers stay binary encoded. (As they were in the
memory of the computer that constructed the URL.)

� Bit strings can stay bit strings without the need to
use indirect representations such as Base64. These bit
strings are displayed as a Data Matrix (one of many
possible visualizations at the disposal of the editor UI
such as Chroma Hash). The use of a data matrix allows
for a compact display of a binary value that does not
necessarily need to be readily deciphered by a human,
while giving some ability to judge equality. In this case
of reverse engineering Google's URL, It is not obvious
if the values `t', `j', `s', and `rja' are also meant to be
treated as Base64. With Infra, such an ambiguity would
not have to exist.

� The nested URL does not have to be escaped, in fact,
it is also parsed, and even labeled as being a URL with
`format' metadata.

� Underscores do not have to be used as a substitute for
spaces.

� The `bvm' value can have the substructure it seems
to want. In this case it was parsed into two values
separated by comma, and then sub-split into key-vals
by period. The `90491159' portion is numeric and is
encoded more usefully as a binary integer - able to
be displayed according to the user's preference for
localized digit-grouping.

Since the query �elds are grouped together, they can con-
veniently be displayed in a tabular arrangement at the re-
quest of the user. From this layout, the information structure
is quite clear, and it is easy to notice that `bvm' is the only
�eld to have more than one associated value.

Not only is unescaping an escaped URL by hand tedious
and cryptic, but it also requires using an ASCII table for
reference. However, in the hypothetical case of Infra-based
URL syntax, extracting the forwarding address is trivial, as

is any other kind of quick editing. In daily routine, we �nd
ourselves often needing to manually tweak video links (such
as YouTube) to either remove the playlist portion (so it only
links to the speci�c video) or to nudge the timecode (because
we hit pause a little late before copying the generated link).
In the pure-text world, doing these simple kinds of things re-
quires familiarity with URL's speci�c meta-characters, rather
than just being the same kind of structured editing across
all user interfaces.

6 Patch
A Patch is a program that returns a data structure. The sim-
plest type of Patch simply references another node in the
tree, returning a shallow copy; this expands the domain of
infra from trees to fully-general graph structures by provid-
ing crosslinks. Patch programs can also make modi�cations
to what they return (without modifying the original); this
enables pure-functional programming at the encoding layer.
In the encoding, Patch nodes are containers like List nodes,
except their children are interpreted as instructions for as-
sembling a return value.

The Patch execution model is centered around the metaphor
of a virtual cursor, equivalent in nature to the cursor in an In-
fra editor. There are instructions to move the cursor around
and instructions to modify the return value at the cursor's
location. Each Patch instruction is a Keyed List made up of
an opcode (key) and a set of arguments (values). The set of
available opcodes is the same as the set of edit operations
available in the Infra editor. Not only is this set of opcodes
general enough to make any modi�cation to a return value,
but it allows for a user-friendly way to author simple Patch
programs. A modi�ed reference can be authored by demon-
stration without ever needing to see or write Patch code. A
user's modi�cations to the Patch output are appended to the
Patch's instructions like a macro recording2.

A Patch's virtual cursor begins execution at the Patch's
own location in the data tree. Starting at that point, Patch
instructions navigate to the desired node, and then describe
the modi�cations that should be made to the returned version
of the referenced node. A Patch's edits operate on a private
overlay of the structure so that edits are re�ected only in its
return value and not in the original source material, such
as in immutable or persistent data structures. Later, we will
see that Patches can return Side-E�ect objects which can, in
turn, perform controlled side e�ects.

2 Please take a moment to watch a video demonstration of the Patch mech-
anism in action at the following link. A transcript is provided in appendix
C.Basic Patch demo h�ps://youtu.be/hs42TeFytEk(� 2 min)

Infra: Structure All the Way Down Onward!'17, October 25�27, 2017, Vancouver, Canada

6.1 Opcodes for Navigation

parent(n) shifts the focus cursor up the tree byn tiers. If
the argument is omitted, the behavior is equivalent to par-
ent(1). If there is nonth parent, the Patch instead evaluates
to the Problem symbol with metadata describing the issue
and execution is halted.

child(i) shifts the focus cursor to itsith child. Or if the
argumenti is a Keyed List, the focus will shift to the �rst
child Keyed-List with a matching key (the same key as in
the argument). If the argument is omitted, the behavior is
equivalent to child(0). If multiple arguments are provided,
each will be considered an index for successive applications
of child(i). In other words, child(2 0 1) would be equivalent
to the sequence: child(2) child(0) child(1). A negative index
value can be used to index backwards from the end of the
list. Thus, the last item of a list can be focused with child(-1),
and the second to last with child(-2), etc.

previous(n) shift focus to the sibling with the indexn less
than the focus' own index in its parent.

next(n) shift focus to the sibling with the indexn more
than the focus' own index in its parent.

metadata(channel) shifts the focus to its associated meta-
data container, and then to a Keyed List within it whose key
matcheschannel. If the argument is omitted, focus just moves
to the metadata container in general.

ID(id) jumps the focus cursor to the `nearest node' with an
ID-metadata value matchingid. The search order resembles
classical scoping rules for identi�ers in most programming
languages. To start, the �rst level of children of the focus are
searched. If none have ID metadata that matches, siblings
are searched. And then, the search resorts to siblings of the
parent, grandparent, etc.

UID(uid) jumps the focus cursor to the unique node with
a UID-metadata value matchinguid. UID-labeled data have
their own namespace and do not have to avoid name colli-
sions with ID-labeled data.

info() shift focus to a synthetic tree populated with infor-
mation about the element that was currently in focus, such
as its number of children, its index position in its parent
container, and its encoding type.

6.2 Opcodes for Modi�cation

The secondary role of Patch instructions is to perform edits,
modifying the value being referenced, but only from that
Patch's perspective. This is akin to concepts such as: copy-on-
write, persistent data structures, and `modi�able references'
in [1]. Since the original reference material is guaranteed not
to be modi�ed, and that material is the Patch's only input
source, Patches behave like `pure functions'.

insert(v) modi�es the focus' parent to containv at the
same index as the focus cursor. If multiple arguments are
provided, all will be inserted at successive index positions.

remove(n) removes the nextn items starting at the position
of the focus cursor. In the argument is omitted, the behavior
is equivalent to remove(1).

write(v) overwrites the value at the current focus with the
valuev. This acts like a remove() followed by an insert(v).

sync(label) halts execution and causes the Patch to evalu-
ate to a Side-E�ect object. (See the following section: E�ect
System) In our prototype editor, we represent a Side-E�ect
object as a clickable button labeled with the value of the
labelargument. When the user clicks the button, the Patch
is resumed in a context where it is safe to mutate the subtree
it references.

6.3 Patch as Function Application

Infra has no need for a native concept of a function or a
function call. Since Patches can be de�ned inline, Patch se-
mantics act simultaneously in the role of a functionand a
call site. Conceptually, function application is the process of
taking an instance of a function and substituting argument
values in for parameter placeholders. That very process can
be performedby a Patch using the building blocks we have
already introduced.

The convention for mimicking a traditional function is to
have a list of default parameter values followed by a result
value that is composed of one or more Patches that reference
those parameter values. Instead of providing a default value
for any particular parameter, Infra's Parameter symbol can
be used as a valueless placeholder. ID or schema metadata
can optionally provide names and type constraints and on
any or all parameters.

Let us look at a concrete example function. To do this, we
are going to have to get slightly ahead of ourselves and use an
arithmetic object for multiplication, which is not introduced
until the section on Native-Service Objects. The following
example is a function that converts an angle and radius to
an x-y pair.

Onward!'17, October 25�27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

The top row shows the Patch tree without any evaluation,
and the bottom row is the reduced (semi-evaluated) form
that would appear in the editor (see the discussion on Native-
Service Objects for clari�cation). The pale blue boxes labeled
`theta' and `radius' areParametersymbol elements, which
are meant to be used as placeholders for a future value -
perfect to play to role of an input parameter.

Next let us look at two di�erent elements that each call
this `polar to cartesian' function with their own arguments.

And here is what these Patches evaluate to:

There is an air of machine-code level programming to this
use of Patch, but note that users will be viewing the evaluated
output of Patches most of the time and author them indirectly
through direct manipulation of their result value. Taking
advantage of live interaction and iterative authoring of input
values can enable a Patch to dispense its own documentation
dynamically in response to the partial values as they are
being assembled.

A general bene�t of leaving function application as an
emergent ability of Patch semantics, is that it itself is pro-
grammable. A variety of function-application semantics can
be supported while keeping the number of �rst-class con-
cepts in the Infra speci�cation minimal.

� default arguments are achieved simply by not over-
writing some of the hard-coded values in a function
interface.

� call by value is achieved when writing literal values
as input arguments.

� call by name / need is achieved when writing Patched
values as input arguments. (lazily evaluated arguments)

� currying is achieved when writing values to only a
subset of locations and leaving the rest to be referred
to and written by other Patches.

� named arguments are achieved when using ID meta-
data on arguments to locate them.

6.4 E�ect System

As described above, a Patch's edits normally only e�ect the
result value of the Patch, leaving the referenced source ma-
terial unchanged. On the occasions that it is useful for a
Patch execution to have a stateful e�ect on the world, an
e�ect system helps this to happen while keeping side e�ects
explicit and controllable. Infra has an e�ect system made up
of three components: the Side-E�ect object-type that can
be returned as the result of a Patch, the sync() opcode that
exports a Patch's attempted mutations as a Side-E�ect object,
and a permissions system to regulate automatic execution
of the side-e�ects described by a Side-E�ect object.

A Side-E�ect object is analogous to a Pull Request in the
popular Git version control system. They are inert return
values until they are applied/triggered. They encapsulate the
edits that a Patch has made to the data it was referencing,
such that those edits can be applied to the original (a destruc-
tive change) at the discretion of the runtime system. Because
Side-E�ect objects are represented as an interactive button
in our prototype, they also resemble and behave like toolbar
or drop-down-menu buttons in a graphical user interface,
which trigger speci�c useful state changes on demand. An
Infra editor UI allows users to trigger Side-E�ect objects di-
rectly. Any Patches that have a dependency on a value being
mutated are invalidated, and will be re-evaulated as needed.
This same mechanism already has to be in place for normal
edits made directly by the user.

When a Patch contains within it a Patch that returns a
Side-E�ect object, the top-level Patch will also evaluate to
a Side-E�ect as well. Logically, this is because it is not only
roadblocked waiting forits side e�ects to occur before pro-
ceeding, but it also needs to have a context for synchronizing
mutations for the nested one to inherit. If schema metadata
appears on a Patch that evaluates to a Side-E�ect, the schema
value itself needs to be a Side-E�ect object in order to be
consistent.

6.5 Native Service Objects

As we have seen thus far, Patch opcodes just perform tree
navigation, insertions, and deletions. On their own, those
operations can not perform computation that is sensitive
to the values they operate on, which is to say, they are not
Turing complete. However, those operationsaresu�cient
for performing `function application'. The right primitive
functions just need to be available in order to bootstrap a
capacity for computation. This is where the native service
objects in the standard library come in.

Since their logic cannot be expressed in terms of virtual
cursor manipulations, these built in functions must be built
in to the standard just like the primitive operations in other
programming languages are. They are loaded by name, just
like any other named entity, but they each override Patch
evaluation or mutation semantics with their own native logic

Infra: Structure All the Way Down Onward!'17, October 25�27, 2017, Vancouver, Canada

rather than execute their contents as standard Patch cursor
instructions. This allows them to use their contents merely
as a presentation layer for their parameters - free to act like
a domain-speci�c language.

We have explored Native Service Objects for perform-
ing logic and arithmetic, for performing operating system
input/output (with the help of Infra's e�ect system), and
for inspecting and manipulating Java runtime objects and
methods.

Logic and Arithmetic The logic and arithmetic entries
in the standard library include boolean operators such as
conjunction and disjunction, mathematical operators such
as addition and subtraction, and control �ow structures such
as if-then-else.

In the table above, the �rst column contains four example
Patches. The second column displays their corresponding
evaluations, all of which are native-service objects. In our
prototype editor, subclassed types are given a yellow back-
ground tint to remind the user that they evaluate according
to overridden semantics. These native-service values cannot
be serialized directly in the Infra encoding. This means that
they are always a result value of a Patch that references their
a-priori existence in a way that can be serialized.

Note that the text elements in these objects are purely
decorative for the sake of their user interface. They are not
necessary for the object to perform its function, but would
be nondescript without them. In the case of the math opera-
tors, the interface is able to resemble a familiar in�x notation
without the need for any explicit support or syntax for dis-
tinctions between pre�x, in�x, and post�x operators. Also
note that, in the case of the multiplication example, the deco-
rative elements can help expressions to use more appropriate
Unicode characters without requiring the user to deal with
the round-about ways to type them manually.

As usual, the parameter values can be written in with
Path's modi�cation opcodes, or the shorthand notation can
be used if it is su�cient to �ll parameters in depth-�rst order.
The following table depicts the shorthand notation of listing
argument values in the body of the instruction.

The �rst column is the directly encodable form of a call
to a native object with argument values. The second column
shows the values after one evaluation. The third column
shows the values after a second evaluation.

In the prototype editor, Patches are displayed only as eval-
uated as they can be without error. In other words, the editor
automatically evaluates Patches up to a point. This refers
to Patches that evaluate to a Patch, that in turn evaluate
potentially to a Patch. Once an evaluation chain results in
a Problem symbol, the previous stage is the one displayed.
Therefore, the example in the �fth row would be displayed
in the form of the second column, while the others would be
displayed in the form of the third column. This assists the
user in �lling in missing values or addressing errors. The
lazy evaluation of Patches means that even deeply-nested
issues could be easily addressed on the surface, one at a time,
without clutter.

Operating System Integration Native-service objects can
provide external forms of input and output. Operating Sys-
tem integration is addressed by four categories of native-
service object: standard input/output console streams, a �le
system tree, executable process interface, and socket binding
interface. All instances of these services all grouped under a
single object registered as �OS�.

On the left is a Patch that jumps to the OS tree and stops.
On the right is its evaluated value. These �ve items look the
way they do because they have ID metadata values and our
prototype defaults to displaying named elements as their ID
value. To help avoid confusing the ID as the actual value at
that location, it is rendered to look like a luggage tag. This
is an example of an editor providing alternative view modes
for subtrees. With the default Face we can see the actual
values, and the tree would look like:

Onward!'17, October 25�27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Each of these items are Lists that keep their contents in
sync with the external reality of their corresponding data
model in the operating system. Each are a special Native-
Service Objects instantiated as singletons inside the OS Ser-
vice Object. If an element is inserted into `output', the ele-
ment is also written to the process' standard output stream.
Bytes written to the process' standard input stream get in-
terpreted as Infra elements and appear in the `input' list. If
input bytes do not successfully parse as Infra, they appear as
plaintext or byte arrays, depending on a human-readability
heuristic used.

Now we have the building blocks we need to write a true
�Hello, World!� program in Infra. The following Patch results
in a button that, when clicked, prints the string to the stan-
dard output stream. (Reminder: printing to standard out is a
state mutation and therefore requires the use of the `sync'
opcode.)

In the �gure before last, `C' and `D' represent drive letters
(the root �le system objects on our machine). These are actu-
ally List elements with ID metadata and, just as before, they
are being displayed in a mode where their ID represents their
whole. In the UI, the actual children of a directory will be
rendered when selecting or drilling down into that element.
To avoid implicitly rendering the whole �le system tree at
once, it is important that Infra editors delay the loading of
sub-trees until they are expanded.

We leave discussion of the sockets sub-tree for future
work.

Runtime Language Reflection Since Infra is an infras-
tructure based around directly authoring and editing struc-
tured data, there is a natural mapping between the internal
data structures of a programming language runtime and

human-readable Infra data structures. For programming lan-
guages that feature runtime re�ection, these mappings can
be automatically supported without having to prepare an
adapter for each data type in advance. Re�ection makes it
possible for the library to dynamically assemble representa-
tions for any object without the need to run pre-processors
on source code or be involved at compile-time. Runtime ob-
jects can be visualized on demand, by the Infra medium. The
Infra medium also naturally brings with it the interactions
necessary to manually assemble argument values into and in-
vocation of native functions/methods. This essentially allows
Infra to act as a visual debugger for the runtime environment
that the editor implementation is running in.

We leave the details of these Native-Service Objects for
future work.

7 Case Study 2: Plain Text at Scale
This section brie�y explores the cost of storing abstract struc-
ture within content in the way that Infra proposes all data be
authored and stored. There are varying degrees of structural
breakdown, hierarchy, and interconnection possible with
any kind of data. For starters, we will look at just a basic �rst
pass of sub-structure that can be given to most plain-text
content - tokenization.

We have tokenized a sample of English texts and source
code �les within Infra to measure an average byte overhead
introduced by Infra's element headers, which segment each
word. Infra editors display whitespace padding between el-
ements, so actual space characters are not needed between
words. Elements of fewer than 15 bytes only require a 1-byte
header, and so most of the time, the presence of the header
byte is made up for with the lack of need for a space charac-
ter. However, newline characters are a common occurrence
in textual data and are not often preceded by whitespace,
but on some operating systems, they are accompanied by a
carriage-return character. In all cases tried, the byte overhead
was less than 4%.

For the full text of Lewis Carroll's �Alice's Adventures in
Wonderland�, the byte size increased from 163,815 bytes to
169,096 bytes when tokenized simply by splitting on space
characters. This is an Infra overhead of3.2%to have struc-
ture at the word level. But, now that there is word-level
structure, Patch can be used to de-duplicate strings by en-
coding a common word once and referring to them from the
locations where they are used. As long as the byte size of the
Patches themselves is smaller than the word they reference
(minus the one-time cost of metadata to number the word),
memory will be saved. In the case of Alice in Wonderland, the
storage size can be reduced by 44,206 bytes (26.1%) through
basic string de-duplication.

For an example of what this kind of Patch usage looks like,
let us take the famous quote from JFK:

Infra: Structure All the Way Down Onward!'17, October 25�27, 2017, Vancouver, Canada

The second row shows `UID' metadata and Patches uneval-
uated. (Reminder: Metadata and Patch both have shorthand
for ID and UID when using strings and numbers respectively,
which is why the metadata does not appear as �UID:4� and
why the Patch commands do not appear as �UID(4)�.)

String de-duplication is a simple form of data compression,
but importantly, this is not a compression scheme that obfus-
cates the data format. Patches are referentially transparent,
and so substituting an element for a reference to the same
value is a non-disruptive transformation.

Hierarchies can be added to make explicit the sentence
structure or `parse tree' of the text. For example, here are
two possible parse trees for the same ambiguous sentence:

We added Standford's open-source NLP parser to the editor
prototype for automatically adding best-guess grammatical
structure. Ignoring metadata to additionally label parts-of-
speech, embedding sentence structure into the text of Alice
in Wonderland required an overhead of just over 10%. Note
that the deduplication saved more than enough bytes to make
up for the tokenization and parse trees, totalling a savings
of 15.8%.

Being able to include extra structure such as a natural-
language parse has a multitude of uses for downstream pro-
cessing. In this case advanced users have the opportunity to
correct bad parses.

8 Case Study 3: Protocol Bu�ers
Replacement

As far as compact high-e�ciency serialization formats go,
Google's Protocol Bu�ers [8] are, by our estimation, the most
widely known, used, and supported in a modern setting. In
this section, we will refer to it simply as `Proto'. Overall, Infra
has roughly the same byte e�ciency as Proto. Both Infra
and Proto precede elements with a one-byte header split into
a type enumeration portion, and a scalar quantity portion.
Also in both cases, the header is conditionally followed by

a variable-length unsigned-integer encoding to allow the
scalar quantity to over�ow into more bits.

The performance of Infra and Proto are tricky to com-
pare directly because they are designed for nearly opposite
circumstances. Proto was designed to be manipulated pro-
cedurally by pre-compiled code, and to eliminate as much
unnecessary exposition of the data on the wire as possible.
Infra was designed to be viewed and authored directly in
its encoded form, and to allow for as much exposition of
the data on the wire as the user wishes to include. That be-
ing said, Infra can still be used in a constrained way as not
to embed any more than the bare minimum necessary for
Proto-like use cases.

8.1 Integer Encoding

In this comparison, we focus on the e�ciency of encoding
integer values, since that is where bit widths are the most
dynamic, and where the bulk of the design complexity resides
in Proto. Infra has two integer base types (Integer and Nibble),
while Proto has ten (int32, int64, uint32, uint64, sint32, sint64,
�xed64, s�xed64, �xed32, s�xed32). Infra can get away with
e�ectively one integral base type because Infra's headers are
parametrized by byte length, whereas Proto's headers are
parametrized by �eld number.

For the following measurements, various trials of encod-
ing a list of ten thousand integers in each encoding were
performed. The integers were randomly chosen from a �at
distribution. Trials vary in the range of random integer val-
ues chosen (small, large, negative) in order to exercise var-
ious phase changes in the encodings. The list is serialized
using each encoding, and the total byte length of the serial-
ization is divided by the number of elements (ten thousand)
to arrive at an average number of bytes per integer. This av-
eraging amortises away the one-time-cost portions of their
byte overhead.

	Abstract
	1 Introduction
	1.1 Motivation

	2 Infra: Human and Machine Friendly
	2.1 The Encoding
	2.2 Direct Authoring by End Users

	3 Lists and Keyed Lists
	4 Metadata
	4.1 Data-Driven Presentation
	4.2 Metadata Association Rules in the Encoding
	4.3 Schemas

	5 Case Study 1: URL Syntax
	6 Patch
	6.1 Opcodes for Navigation
	6.2 Opcodes for Modification
	6.3 Patch as Function Application
	6.4 Effect System
	6.5 Native Service Objects

	7 Case Study 2: Plain Text at Scale
	8 Case Study 3: Protocol Buffers Replacement
	8.1 Integer Encoding
	8.2 Proto-Definition Encoding

	9 Related Work
	10 Backwards Compatibility and Adoption
	11 Conclusion
	11.1 Closing Statements

	A Transcript for Video 1 - Building Blocks
	B Transcript for Video 2 - Quantities
	C Transcript for Video 3 - Patch Intro
	Acknowledgments
	References

