
Independence Detection for Multi-Agent Pathfinding Problems

Trevor Standley
Google Inc.
340 Main St.

Venice, CA 90291
trevorstandley@gmail.com

Abstract

Problems that require multiple agents to follow non-
interfering paths from their current states to their re-
spective goal states are called multi-agent pathfinding
problems (MAPFs). In previous work, we presented In-
dependence Detection (ID), an algorithm for breaking a
large MAPF problem into smaller problems that can be
solved independently. Independence Detection is com-
plete and can be used in combination with both opti-
mal and approximation algorithms. This paper serves
as an introduction to Independence Detection and aims
to clarify its details.

Introduction
Pathfinding, or planning a route to a destination that avoids
obstacles, is a classic problem in AI. When only a sin-
gle agent is present, the problem can usually be effectively
solved using the A* algorithm (Hart et al. 1968). Unfor-
tunately, standard search algorithms such as A* quickly be-
come intractable with multiple agents. Multi-agent pathfind-
ing has applications in robotics, aviation, and vehicle routing
(Wang and Botea 2008; Svestka and Overmars 1996), and is
becoming increasingly important in modern video games.

Problem Formulation
Examples of cooperative pathfinding problems include plan-
ning the motions of multiple robotic arms, each of which
must accomplish a separate goal without moving into one
another; scheduling trains in a rail road network without
sending a pair of trains on a collision course; and decid-
ing actions for automobiles approaching an intersection so
that each may pass through safely and quickly (Dresner and
Stone 2004). For the sake of clarity and simplicity, we will
describe Independence Detection using an eight-connected
grid world like the one in Figure 1.

We use the problem formulation from our previous works
(Standley 2010; Standley and Korf 2011), in which each
agent occupies a single cell of the grid world and has a
unique destination. During a single timestep, each agent can
either wait or move to any of its eight adjacent cells if that
cell is free. A cell is free if it does not contain an obstacle

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A small grid world instance. Cars represent initial agent
positions. Flags represent destinations. Obstacles are in black.

and will not be occupied by another agent at the end of the
timestep. The cost of a single agent’s path is the total num-
ber of timesteps that the agent spends away from its goal,
and the cost of the entire solution is the sum of all single-
agent path costs. Diagonal moves are allowed even when the
two cells on the opposing diagonal are not free, for example,
agent 5 in Figure 1 can immediately move to its destination.
Agents arranged in a cycle are allowed to simultaneously
follow one another, resulting in a rotation of the agents that
does not require an empty cell. For example, agents 1, 2,
3, and 4 can simultaneously move to their destinations in a
single timestep. However, transitions in which agents pass
through each other, including diagonally crossing, are pro-
hibited even when those agents never occupy the same posi-
tion during the same timestep. For example, agents 6 and 7
cannot simultaneously move to their destinations.

Related Work
Multi-agent pathfinding problems have usually been solved
in one of two ways in the literature. In global search
approaches, such as those in (Surynek 2009; Ryan 2008;
Svestka and Overmars 1996; Sharon et al. 2011), the en-
tire set of agents is treated as a single entity and paths
are found for all agents simultaneously. Alternatively,
in decoupled approaches, such as those in (Silver 2005;
Wang and Botea 2008; Jansen and Sturtevant 2008a; 2008b),
paths are found for each agent one at a time, and informa-

53

Multiagent Pathfinding 
AAAI Technical Report WS-12-10



tion about the paths of other agents is used to ensure that
no paths conflict. Global search approaches typically have
the advantage of being complete, meaning that they will al-
ways eventually find a solution to any problem if a solution
exists, but are often intractable for even small numbers of
agents. On the other hand, decoupled approaches are fast,
but usually incomplete.

We presented Independence Detection in (Standley 2010)
and refined it in (Standley and Korf 2011). Independence
Detection (ID) decomposes a problem instance into inde-
pendent subproblems and can do so without compromising
optimality. ID uses a more costly global search algorithm
only on subproblems for which no such independence can
be found. Independence Detection can be both complete and
optimal when coupled with a complete and optimal global
search algorithm. Alternatively, ID offers a trade-off be-
tween solution quality and computation time without sac-
rificing completeness.

To our knowledge, all optimal algorithms in the literature
either make use of the Independence Detection algorithm, or
have difficulty solving problems with more than 20 agents.
In contrast, optimal algorithms that make use of ID can often
solve problems with more than 100 agents in seconds.

Independence Detection
ID is an algorithm that is used in conjunction with a com-
plete search algorithm such as A*, OD (Standley 2010), or
ICTS (Sharon et al. 2011). Since these search algorithms are
all exponential in the number of agents, they are effective
only for small numbers of agents. In order to solve larger
problems, ID partitions the agents into several smaller travel
groups in such a way that the optimal paths found for each
independent travel group do not conflict with the paths of
other travel groups. Therefore, the paths for all travel groups
constitute a solution to the entire problem.

To explain Independence Detection, we will first describe
a simple algorithm that detects some kinds of independence
in problems in which agents’ paths are less likely to inter-
fere with one another. Then, we will describe two important
refinements, each of which drastically improves the algo-
rithm’s performance.

Simple Independence Detection
A simple independence detection (SID) algorithm works as
follows: First, assign each agent to its own travel group.
Then, find a path for each agent’s travel group. Some of
these paths probably contain conflicts with the paths of other
travel groups. By simulating the actions of every agent fol-
lowing these preliminary paths, we can discover conflicts
among the paths. We then merge the first two travel groups
whose paths are found to conflict and find a new set of paths
for the merged travel group using the complete global search
algorithm. We can repeat this process of merging two con-
flicting travel groups into a larger travel group until no con-
flicts are found. We can be sure that this algorithm will ter-
minate because in the worst case, it will merge all the agents
into a single travel group and find paths for this group using
the global search algorithm. There are three eventualities.

First, SID could find a set of travel groups that are indepen-
dent, in which case the algorithm terminates with a valid
solution. Second, the algorithm could find a travel group for
which no solution can be found, in which case the problem
has no solution. Finally, the algorithm could combine all
of the agents into a single travel group, in which case SID
didn’t find any independence and must delegate the entire
problem to the global search algorithm.

The pseudocode for this simple independence detection
algorithm is copied from (Standley 2010) as Algorithm 1.

Algorithm 1 Simple Independence Detection
1: assign each agent to a singleton travel group
2: plan a path for each travel group with A*
3: repeat
4: simulate execution of all paths until a conflict occurs
5: merge two conflicting travel groups into a single travel

group
6: use global search to generate paths for the new travel group
7: until no conflicts occur
8: solution← paths of all travel groups combined
9: return solution

Refinement 1: Illegal Move Table
Because the running time of the algorithm is dominated by
the time to plan paths for the largest travel group, perfor-
mance can be improved drastically by avoiding unnecessary
merges. This is our intuition behind our first refinement. In-
stead of always merging conflicting travel groups, a more
sophisticated algorithm can find an alternative set of paths
for one of the groups, one that avoids the paths of the other
conflicting group.

If we wish to ensure optimality, the alternative paths for
a travel group must have the same total cost as the initial
paths for that travel group. We refer to this as the optimal-
ity constraint of ID. To satisfy this requirement, the global
search algorithm can be given a cost limit, so that it does not
consider paths of greater cost.

The alternative paths are only useful if they obviate the
need to merge the two groups, so the new paths must avoid
all possible conflicts with the other travel group. Thus, the
global search algorithm is also given a table called the illegal
move table, which records which moves are illegal at which
timesteps. The illegal move table is similar to the reserva-
tions table used in Silver’s HCA* (Silver 2005) except that
it stores illegal moves rather than illegal tiles. When the
global search algorithm is considering a move for an agent,
it consults the illegal move table at the appropriate timestep
to determine whether that move would result in yet another
conflict with the other travel group. It can treat such moves
as illegal.

For example, if the paths of two travel groups G1 and
G2 conflict, we can try to replan the paths of G1. First, we
would populate the illegal move table based on the transi-
tions that agents in G2 make when following G2’s current
paths at every timestep. When our global search algorithm
tries to find another set of paths for G1, it only considers
moves that are not in the illegal move table and therefore

54



will not conflict with the moves of agents in G2. If a new
set of paths is found, then the conflict between these two
groups has been resolved. However, since we have made
some moves illegal, the algorithm may not be able to find an
alternative set of paths. In this case, we can try to replan the
paths of G2.

With this refinement, the algorithm vastly outperforms the
simple independence detection algorithm because it is able
to recover from poorly chosen paths.

Refinement 2: Conflict Avoidance Table
Giving our algorithm the foresight to avoid future conflicts
also drastically improves performance.

Whenever the global search algorithm finds paths for a
travel group, it is important for the algorithm to avoid other
agents’ paths in order to reduce the likelihood of future
travel group merges and replans. Toward this goal, the full
ID algorithm uses a table similar to the illegal move table,
which is called the conflict avoidance table. This table
stores all the current tentative moves of all agents not in the
travel group being planned.

We want our global search algorithm to generate paths
containing as few moves in conflict with the conflict avoid-
ance table as possible. Toward this end, the algorithm
should have multiple priorities. If the overall algorithm must
achieve optimal solutions, then the first priority is to return a
solution with the lowest cost. Among paths with the lowest
cost (there are often many paths with optimal cost) the al-
gorithm should choose a path with the fewest conflict avoid-
ance table violations. If optimality is not as important as
running time, then avoiding conflict table violations should
be the first priority.

For A*-like global search algorithms this can be easily
achieved. In such algorithms, tie-breaking between nodes
with the same minimum f(n) cost is usually done by choos-
ing the node with the lowest h(n) to achieve the best per-
formance. To avoid future conflicts, the algorithm can keep
track of another number for every node in addition to h(n)
and g(n), denoted v(n). v(n) represents the number of con-
flicts with existing paths that occur on the best path to a
node n. For each child node c that results from making
move m from its parent node p, we set v(c) = v(p) + 1
whenever m conflicts with the conflict avoidance table, and
v(c) = v(p) otherwise. The general search algorithm can
then break ties in f(n) by the lowest v(n). This tie-breaking
strategy ensures that among the many sets of optimal paths,
the paths returned during replanning will have the fewest
conflicts with the current paths of agents outside the group
(Standley 2010). If optimality is not the primary concern,
the algorithm can just as easily break v(n) ties with f(n)
instead, which results in a faster, yet suboptimal algorithm.

Global search algorithms like ICTS can probably achieve
this by keeping a cutoff value for the number of conflict table
violations in each node of the top level search and expanding
nodes in order of lowest cost, and then lowest v(n) to obtain
optimal solutions.

Using the conflict avoidance table should not be over-
looked. Our experiments below show a speedup of at least
as many orders of magnitude as our first refinement.

Full Independence Detection
The full ID algorithm starts by assigning each agent to its
own travel group. It then finds an initial path for each travel
group independently, guided by the conflict avoidance table.
Next, ID looks for conflicts within its current set of paths.
Upon detecting a conflict, ID attempts to find an alternative
set of paths for one of the conflicting travel groups, ensur-
ing that the new paths do not conflict with the other travel
group. If this fails, it repeats this process with the other of
the conflicting travel groups. If both attempts to find alter-
native paths fail, ID merges the conflicting groups and co-
operatively plans a set of paths for the new travel group. All
paths are planned with a constantly updated conflict avoid-
ance table to minimize future conflicts.

The pseudocode for this full independence detection al-
gorithm is adapted from our prior work (Standley 2010).

Algorithm 2 Independence Detection
1: create a singleton travel group for each agent
2: plan optimal paths for each travel group with A*
3: call Resolve Conflicts with all paths
4: solution← paths of all groups combined
5: return solution

Algorithm 3 Resolve Conflicts
1: fill conflict avoidance table with every path
2: repeat
3: simulate execution of all paths until a conflict between two

travel groups G1 and G2 occurs
4: if G1 and G2 have not conflicted before then
5: fill illegal move table with the current paths for G2

6: find alternative paths for G1 that do not conflict with G2

and satisfy cost limits
7: if failed to find such paths then
8: fill illegal move table with the current paths for G1

9: find alternative paths for G2 that do not conflict with
G1 and satisfy cost limits

10: end if
11: end if
12: if failed to find alternative paths for both G1 and G2 then
13: merge G1 and G2 into a single group
14: cooperatively plan new group with OD
15: end if
16: update conflict avoidance table with changes made to paths
17: until no conflicts occur

It’s important to keep in mind that under our formulation,
when agents reach their goals, they can still conflict with
other agents who may try to pass through their goals while
they are stopped on them. ID must try to avoid such con-
flicts, which can be accomplished by filling in the illegal
move table and conflict avoidance table appropriately for all
timesteps after agents have reached their goals.

Optimizations
Group Order for Replanning
Choosing which travel group to replan first when two groups
collide is an obvious thing to optimize. In preliminary exper-
iments we found that it works well to first replan the travel

55



group that took the least time to plan initially, and that it is
better than simply choosing the travel group with the fewest
agents.

Initial Path Choice
Another important and helpful modification of ID involves
the initial paths used. ID starts with a path for each agent,
and then resolves the conflicts among those agents. There
can be many choices for the initial paths, however, and a
choice with fewer initial conflicts will lead to fewer replans
and group merges. To achieve this, we find a path for every
agent twice in the initialization step. We first find a path for
every agent in turn while avoiding conflicts with the paths of
all previously planned agents whenever possible, using the
conflict avoidance table. On the second pass, we then find
another path for every agent that tries to avoid conflicts with
the newest path found for every other agent (either from the
first pass or the current second pass). This ensures that the
final path we find for every agent maximally avoids a path
found for every other agent on either the first pass or the
second pass.

Prioritize Avoiding Large Groups
Also, when finding paths, some travel groups are more im-
portant to avoid than others. Large groups in particular are
harder to replan, and if replanning fails, we risk creating an
even larger travel group. By storing a cost for every move in
the conflict avoidance table, and incrementing v(n) by the
cost at every node expansion rather than simply increment-
ing by 1, we can effectively bias the algorithm to avoid large
travel groups. In preliminary experiments, we set the cost to
the group size, and achieved modest performance improve-
ments.

Avoid Futile Replanning
When an agent collides with an agent that is stopped at
its goal, it’s impossible to find an alternative path for the
second agent’s travel group that has the same optimal cost
and avoids this collision, because all paths for the second
agent’s travel group will still result in the second agent being
stopped at its goal. Therefore, replanning the second agent’s
group is futile, and we can avoid wasting time recomputing
new paths for such groups. Again, this modification results
in modest improvements in running time.

Experiments
All of our experiments were run on an Intel Core i7 @
2.4GHz using benchmarks like those proposed in (Silver
2005) and used in (Standley 2010; Standley and Korf 2011):
32x32 grids were generated with random obstacles (each
cell is an obstacle with 20% probability). Each agent was
placed in a random unique location with a random unique
destination.

Just like (Standley 2010; Standley and Korf 2011), we use
what we call the performance curve of an algorithm on a set
of instances to convey how well an algorithm performs on
a set of instances. We run each algorithm on each instance
in the set and record the time taken to solve each instance.

Figure 2: Performance curves for various refinements of in-
dependence detection.

For each algorithm, we sort the instances based on the time
taken by that algorithm, and plot the results. The index of
each instance in the sorted sequence is plotted along the x-
axis, and the time taken to solve that instance is plotted along
the y-axis. Note that the ith instance is a different problem
instance for each algorithm’s performance curve. Therefore,
a performance curve shows the total number of instances an
algorithm would solve if limited to a certain amount of time
per instance.

The performance curves in Figure 2 were generated on
10,000 problems with a random number of agents between 2
and 60. Operator decomposition on its own was able to opti-
mally solve only 23.6% of problems in one second. Adding
simple independence detection nearly doubled the number
of problems solved, bringing it to 45.6%. Refinement 1,
which adds replanning with an illegal move table, brings the
total up to 60.2% (an increase of about 32%). Even more
drastic improvements were seen when the collision avoid-
ance table was introduced (i.e., refinement 2), increasing
the number of problems solved to 87.4% (an additional im-
provement of about 45%). Since we chose problems having
a wide range of difficulty levels, solving the larger problems
is substantially harder, highlighting the importance of refine-
ment 2.

Adding all four optimizations described in the last sec-
tion allow us to solve a modest 2.5% more problems. This
might not sound like much, but it would require 2.5 times
longer to solve that many extra problems without the addi-
tional optimizations. Further experimentation revealed that
choosing which travel group to attempt to plan first was the
most effective optimization, allowing the algorithm to solve
70 more problems than it would with just the other optimiza-
tions. Prioritizing avoiding collisions with large groups al-
lowed 48 more problems to be solved than with just the other
optimizations. Using better initial paths helped to solve an
extra 27 problems, but it is more effective when ID is used to
find approximate solutions. Finally, avoiding futile replan-
ning was not effective at helping to solve more problems, but
did reduce the time needed to solve problems by an average

56



of about 15%.

Future Work
Independence detection has proven to be a powerful tech-
nique for breaking large MAPF problems into more manage-
able pieces, but the algorithm requires that there are travel
groups whose paths are entirely independent. A better algo-
rithm might be able to take advantage of independence that
exists before and after a conflict.

Conclusion
In this paper, we described Independence Detection in
greater detail than in our previous work. First, we gave a
simple algorithm for detecting independence, SID. We re-
fined the algorithm with the addition of illegal move tables,
which allow the algorithm to recover from unfortunate initial
path choices. We further refined the algorithm using conflict
avoidance tables, which allow the algorithm to make better
path choices in the first place, thereby often avoiding future
conflicts. Finally, we proposed four simple optimizations
that further increase the algorithm’s performance, including
three that have never before been published. We showed that
our second refinement, using collision avoidance tables, was
the most effective, and we quantified the effectiveness of our
other refinements and optimizations.

References
Kurt M. Dresner and Peter Stone. Multiagent traffic manage-
ment: A reservation-based intersection control mechanism.
In AAMAS, pages 530–537, 2004.
Alborz Geramifard, Pirooz Chubak, and Vadim Bulitko. Bi-
ased cost pathfinding. In John E. Laird and Jonathan Schaef-
fer, editors, AIIDE, pages 112–114. The AAAI Press, 2006.
Peter Hart, Nils Nilsson, and Bertram Raphael. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2):100–107, February 1968.
M. Renee Jansen and Nathan R. Sturtevant. Direction maps
for cooperative pathfinding. In AIIDE poster, 2008.
M. Renee Jansen and Nathan R. Sturtevant. A new approach
to cooperative pathfinding. In AAMAS 2008 Volume 3, pages
1401–1404, 2008.
Malcolm R. K. Ryan. Exploiting subgraph structure in
multi-robot path planning. JAIR, 31(1):497–542, 2008.
Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Fel-
ner. The increasing cost tree search for optimal multi-agent
pathfinding. In Walsh (2011), pages 662–667.
David Silver. Cooperative pathfinding. In AIIDE, pages
117–122, 2005.
Trevor Scott Standley and Richard E. Korf. Complete al-
gorithms for cooperative pathfinding problems. In Walsh
(2011), pages 668–673.
Trevor Standley. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, pages 173–178, 2010.

Pavel Surynek. An application of pebble motion on graphs
to abstract multi-robot path planning. In ICTAI, pages 151–
158, 2009.
P. Svestka and M. H. Overmars. Coordinated path planning
for multiple robots. Technical Report UU-CS-1996-43, De-
partment of Information and Computing Sciences, Utrecht
University, 1996.
Toby Walsh, editor. IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011. IJ-
CAI/AAAI, 2011.
Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-
efficient multi-agent pathfinding. In ICAPS, pages 380–387,
2008.
K.-H. C. Wang and A. Botea. Tractable Multi-Agent Path
Planning on Grid Maps. In Proceedings of the International
Joint Conference on Artificial Intelligence IJCAI-09, pages
1870–1875, Pasadena, CA, USA, 2009.

57




