
Complete Algorithms for Cooperative Pathfinding Problems

Trevor Standley1 and Richard Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

{tstand, korf}@cs.ucla.edu

Abstract
Problems that require multiple agents to follow
non-interfering paths from their current states to
their respective goal states are called cooperative
pathfinding problems. We present the first complete
algorithm for finding these paths that is sufficiently
fast for real-time applications. Furthermore, our al-
gorithm offers a trade-off between running time and
solution quality. We then refine our algorithm into
an anytime algorithm that first quickly finds a so-
lution, and then uses any remaining time to incre-
mentally improve that solution until it is optimal or
the algorithm is terminated. We compare our al-
gorithms to those in the literature and show that in
addition to completeness, our algorithms offer im-
proved solution quality as well as competitive run-
ning time.

1 Introduction
Pathfinding, or planning a route to a destination that avoids
obstacles, is a classic problem in AI. When only a single
agent is present, the problem can usually be effectively solved
using the A* algorithm [Hart et al., 1968]. When the prob-
lem contains multiple agents, however, care must be taken to
avoid computing a solution that leads any subset of agents
to conflict, for example, one that requires two agents to oc-
cupy the same space at the same time. Cooperative pathfind-
ing has applications in robotics, aviation, and vehicle routing
[Wang and Botea, 2008; Svestka and Overmars, 1996], and
is becoming increasingly important in modern video games,
but because all known fast algorithms are incomplete, play-
ers must be notified when the algorithm fails and manually
fix the issue.

2 Problem Formulation
There are many distinct types of cooperative pathfinding
problems, but the algorithm we present is broadly applica-
ble. Examples of cooperative pathfinding problems include
planning the motions of multiple robotic arms, each of which
must accomplish a separate goal without moving into one an-
other, scheduling trains in a railroad network without sending

1current affiliation: Google Inc.

Figure 1: A small grid world instance. Cars represent initial agent
positions. Flags represent destinations. Obstacles are in black.

a pair of trains on a collision course, and deciding actions
for automobiles approaching an intersection so that each may
pass through safely and quickly [Dresner and Stone, 2004].
For the sake of clarity, simplicity, and comparison to exist-
ing algorithms, the testbed for our algorithm will be an eight-
connected grid world like the one in Figure 1.

We use the problem formulation from our previous work
[Standley, 2010], in which each agent occupies a single cell
of the grid world and has a unique destination. During a sin-
gle timestep, each agent can either wait or move to any of its
eight adjacent cells if it is free. A cell is free if it does not
contain an obstacle and will not be occupied by another agent
at the end of the timestep. The cost of a single agent’s path
is the total number of timesteps that the agent spends away
from its goal, and the cost of the entire solution is the sum
of all path costs. Diagonal moves are allowed even when the
two cells on the opposing diagonal are not free, for example,
agent 5 in Figure 1 can immediately move to its destination.
Agents arranged in a cycle are allowed to simultaneously fol-
low one another, resulting in a rotation of the agents that does
not require an empty cell, for example, agents 1, 2, 3, and
4 can simultaneously move to their destinations in a single
timestep.

However, transitions in which agents pass through each
other including diagonal crossing are prohibited even when
those agents never occupy the same position during the same
timestep, for example, agents 6 and 7 cannot simultaneously
move to their destinations.

3 Related Work
Cooperative pathfinding problems have usually been solved
in one of two ways in the literature. In global search ap-
proaches, the entire set of agents is treated as a single en-
tity and paths are found for all agents simultaneously. Alter-
natively, in decoupled approaches paths are found for each
agent one at a time, and information about the paths of other
agents is used to ensure that no paths conflict. Global search
approaches typically have the advantage of being complete,
meaning that they will always eventually find a solution to
any problem if a solution exists, but are often intractable for
even small numbers of agents. On the other hand, decoupled
approaches are fast, but incomplete.

One example of a decoupled approach is HCA* [Silver,
2005]. HCA* employs a reservation table for timestep-
location pairs. The algorithm chooses a fixed ordering of
agents, and plans a path for each agent in turn that avoids con-
flicts with previously computed paths by checking against the
reservation table. Unfortunately, in over half of our bench-
mark instances, some agents never reach their destinations
because the paths found for previous agents in the fixed or-
der can make finding paths for subsequent agents impossi-
ble. Using a windowed search, Silver’s WHCA* mitigates
this problem at the cost of solution quality and running time.

Other decoupled attempts establish a direction for ev-
ery grid position and encourage or require each agent to
move in that direction at every step [Wang and Botea, 2008;
Jansen and Sturtevant, 2008a; 2008b]. These methods reduce
the chance of computing conflicting paths by creating the
analog of traffic laws for the agents to follow. While these
methods are effective at reducing the number of incompat-
ible paths, paths are still computed greedily one agent at a
time. Therefore, this strategy also leads to incomplete algo-
rithms. Moreover, the speed advantage of these algorithms
over HCA* comes at the cost of solution quality because
many valid paths are pruned or penalized if they don’t obey
the traffic laws.

Unfortunately, it is PSPACE-hard to find any solution
to many cooperative pathfinding problems [Hopcroft et al.,
1984; Hearn and Demaine, 2005], so research in this area
tends to focus on incomplete algorithms like the ones above.

However, there are a few complete algorithms in the lit-
erature [Surynek, 2009; Ryan, 2008; Svestka and Overmars,
1996]. These algorithms abstract the search space so that so-
lutions can be found with a global search algorithm for the
abstraction. These algorithms are complete, but usually have
high solution costs. Furthermore, the time and memory re-
quirements of these algorithms limit their applicability.

In our prior work, we presented another complete algo-
rithm that is also optimal [Standley, 2010]. We proposed
two techniques. Independence Detection (ID) decomposes
instances into independent subproblems when doing so would
not compromise optimality, and only uses a more costly but
admissible search algorithm, Operator Decomposition (OD),
when no such independence can be found. Although this
combination is both complete and optimal, it has a couple
of drawbacks. First, since it only aims for optimal solu-
tions, its running time is prohibitively expensive for many

real-time applications. Second, prematurely terminated runs
of the algorithm only return conflicting paths. The present
work builds on our OD+ID algorithm, and overcomes these
drawbacks.

4 OD+ID
In our prior work, we started by defining a state space rep-
resentation for cooperative pathfinding problems that is op-
timized for A* called OD. The general idea is that each
search node contains a position for every agent, and subse-
quent nodes are generated by changing the position of a single
agent. We showed that OD drastically reduces the number of
nodes generated when compared to A*, because pruning can
take place even before all agents have been assigned a move.
A* with the OD state space representation is a global search
algorithm, which we refer to simply as OD. We couple OD
with our independence detection algorithm, ID, which parti-
tions the agents into several smaller groups, and finds optimal
paths for each group with OD. The algorithm ensures that the
paths found for each group are optimal and that the paths for
agents in separate groups do not conflict. Taken as a whole,
the groups’ paths constitute an optimal solution to the coop-
erative pathfinding problem.

4.1 Independence Detection
We present the details of independence detection because
they are important for developing the algorithms in this paper.
As a first step toward an independence detection algorithm,
we presented a simple way to discover independent partitions
of agents [Standley, 2010]: Start by independently finding a
path for each agent and look for collisions within those paths.
Group the first two agents found to be in conflict and find a
new path for the group using a global search A* algorithm
such as OD. Repeat this process of merging two conflicting
groups into a larger group and recomputing a path for the new
group until there are no more conflicts.

Because the running time of the algorithm is dominated by
the time to plan paths for the largest group, performance can
be improved drastically by avoiding unnecessary merges. The
ID algorithm can sometimes avoid merging two conflicting
groups by finding a new optimal path for one of the groups.
In order to ensure optimality, the new paths for a group must
have the same total cost as the initial paths. We refer to
this as the optimality constraint of ID. To satisfy this require-
ment, OD is given a cost limit, and does not consider paths of
greater cost. We also want the new path found to not conflict
again. Thus, OD is also given a table called the illegal move
table. When OD expands a node, it consults the illegal move
table at the appropriate timestep to determine which of the
node’s children would result in a path with another conflict,
so that it may discard these children.

If, for example, two groups G1 and G2 conflict, and ID
decides to replan the path of G1, ID would populate the illegal
move table with the transitions that agents in G2 make when
following G2’s current paths at every timestep. When OD
expands a node while replanning the path for G1, it checks
the table at that node’s timestep, and only considers moves
that do not conflict with the moves of G2’s agents during that

timestep. If a path is found, then the conflict between these
two groups has been resolved.

During these replans, it is important that the algorithm find
a path that creates the fewest conflicts with other agents’
paths, so that future merges and replans are less likely to oc-
cur. Toward this goal, ID uses a table similar to the illegal
move table, which is called the conflict avoidance table. This
table stores the moves of all other agents for every timestep.
In A* algorithms, tie-breaking between nodes with the same
minimum f(n) cost is usually done by choosing the node
with the lowest h(n) to achieve the best performance. To
avoid future conflicts, the algorithm can keep track of another
number for every node, v(n), which represents the number of
conflicts with existing paths that occur on the best path to a
node n. For each child node c that results from making move
m from its parent node p, we set v(c) = v(p)+1 whenever m
conflicts with the conflict avoidance table, and v(c) = v(p)
otherwise. The algorithm then breaks ties first by the lowest
v(n), then by the lowest h(n). This tie-breaking strategy en-
sures that among the many sets of optimal paths, the paths
returned during replanning will have the fewest conflicts with
the current paths of agents outside the group [Standley, 2010].

ID starts by assigning each agent to its own group. It then
finds an initial path for each group independently. Next, ID
looks for conflicts within its current set of paths. Upon de-
tecting a conflict, ID attempts to find an alternative path for
one of the conflicting groups, ensuring that the new path does
not conflict with the other group. If this fails, it repeats this
process with the other conflicting group. If both attempts to
find alternative paths fail, ID merges the conflicting groups
and cooperatively plans a path for the new group. All paths
are planned with a constantly updated conflict avoidance ta-
ble to minimize future conflicts.

The pseudocode for this full independence detection algo-
rithm is adapted from our prior work [Standley, 2010].

Algorithm 1 Independence Detection
1: create a singleton group for each agent
2: plan optimal paths for each group with A*
3: call Resolve Conflicts with all paths
4: solution← paths of all groups combined
5: return solution

5 Approximate Algorithms
Many applications, especially those in digital entertainment,
demand real-time performance, and it is often acceptable to
sacrifice solution quality to satisfy this demand. There have
been many algorithms suggested for this purpose, and some
are described in Section 3. Unfortunately, we know of no ex-
isting algorithm that is both efficient and complete, so human
intervention is often required in real-time applications. How-
ever, OD+ID can be easily extended to create an algorithm
that is not only complete, but also offers a tradeoff between
solution quality and running time.

6 Complete Approximate Algorithms
Two constraints embedded in OD+ID ensure that its solutions
are optimal. The first is the previously mentioned optimal-
ity constraint of ID, which is implemented by giving OD a

Algorithm 2 Resolve Conflicts
1: fill conflict avoidance table with every path
2: repeat
3: simulate execution of all paths until a conflict between two

groups G1 and G2 occurs
4: if G1 and G2 have not conflicted before then
5: fill illegal move table with the current paths for G2

6: find alternative paths for G1 that do not conflict with G2

and satisfy cost limits
7: if failed to find such paths then
8: fill illegal move table with the current paths for G1

9: find alternative paths for G2 that do not conflict with
G1 and satisfy cost limits

10: end if
11: end if
12: if failed to find alternative paths for both G1 and G2 then
13: merge G1 and G2 into a single group
14: cooperatively plan new group with OD
15: end if
16: update conflict avoidance table with changes made to paths
17: until no conflicts occur

cost limit for finding alternative paths. The second constraint
is that OD always expands nodes in non-decreasing order of
f(n) cost.

Dropping both constraints produces a fast and complete al-
gorithm. Without the optimality constraint of ID, OD will
search for alternative paths of any length rather than just opti-
mal paths, making it much more likely for an alternative path
to be found so that the conflicting groups do not have to be
merged.

As long as nodes on the open list are expanded in the order
of lowest f(n) first, and h(n) is always a lower bound on the
node’s distance to the goal, A* will return an optimal solu-
tion [Hart et al., 1968]. In dropping the second constraint,
we propose a modification to A* and thus OD. Instead of ex-
panding nodes with lowest f(n) first, we expand nodes with
lowest v(n) first, and break ties in favor of lowest f(n). Now
OD will be guaranteed to return paths that minimally conflict
with the current paths of other groups instead of paths with
the lowest cost. Nevertheless, among the many paths with the
fewest conflicts, OD will find one with the lowest cost.

In order to produce even higher-quality solutions, we ob-
serve that we can dynamically drop these constraints, which
leads to an algorithm that offers the time-quality trade-off
mentioned above. We introduce a parameter called the max-
imum group size (MGS). Consider a situation during the ex-
ecution of ID in which we encounter a conflict between two
groups G1 and G2 each containing s1 and s2 agents respec-
tively. ID will try to find an alternative path for G1 that
does not conflict with G2. In order to avoid creating groups
larger than the MGS, we drop the two constraints whenever
s1 + s2 > MGS. This leads to a spectrum of approxima-
tions. If the MGS is one, this algorithm will always drop
the constraints (because merging would always result in a
group of size two or larger). If the MGS is greater than one,
the algorithm will take longer because it must find optimal
paths for larger groups of agents, but this allows it to produce
lower-cost paths. We drop the constraints when finding initial
single-agent paths if and only if the MGS is one.

Note that it is still possible for the algorithm to produce a
group containing more agents than the maximum group size.
This will happen when no appropriate alternative paths of any
length exist for either of the two groups in a given conflict.
In this case, independence detection will merge the groups
as usual to maintain completeness. Fortunately, this does not
happen very often as there are a combinatorial number of pos-
sible alternative paths, and only one is needed to resolve the
conflict.

We call this algorithm the maximum group size algorithm
(MGS). We denote an algorithm with a maximum group size
of x as MGSx. Note that if x is sufficiently large, the algo-
rithm behaves exactly like OD+ID.

7 Optimal Anytime Algorithms
The ideal algorithm for real-time applications is an opti-
mal anytime algorithm. Optimal anytime algorithms even-
tually find optimal solutions, but these algorithms can also
be stopped before completion because they maintain an ever-
improving solution that they can return at any time. Unfor-
tunately, neither OD+ID nor the MGS algorithm presented
above can solve the problem in this way. Once given a max-
imum group size, the MGS algorithm spends an unspecified
amount of time to return a result, and there are no meaningful
intermediate results.

A simple way that the MGS algorithm can be adapted to be
an anytime algorithm is inspired by iterative deepening [Korf,
1985]. First, we run MGS1. After it has found a solution,
we run MGS2 if time remains. We continue to incrementally
increase the maximum group size until time has run out. At
that time, we return the highest-quality solution found so far.
If we make the assumption that the running time of OD is
roughly exponential in the number of agents in its group and
does not depend on the number of agents in other groups, and
we also assume that MGSx never calls OD with groups larger
than x, then the overhead for the last unfinished iteration and
unused previous iterations does not depend on the number of
agents in the problem.

We call this the simple anytime algorithm. This algorithm
is useful, but we can mitigate the overhead of unused and
unfinished iterations.

In order to make use of the work done on previous iter-
ations, we would like to reuse the old groupings found, as
well as the paths for as many of those groups as possible. We
would like to maintain the invariant that at the end of an iter-
ation, all groups with sizes less than the MGS have optimal
paths so that the algorithm eventually arrives at an optimal so-
lution. To accomplish this, we must have a way of knowing
which groups already have optimal paths. Fortunately, if we
label each group with a lower bound on the cost of an optimal
path for that group, we can tell which groups have optimal
paths. The initial lower bound for each singleton group G
can simply be h(g). During the execution of the algorithm,
we can sometimes update these lower bounds. Groups with
costs equal to their lower bounds are known to have optimal
paths for that group.

When groups are merged, the algorithm must cooperatively
plan a path for the new group. If the size of the new group is

less than the current maximum group size, then we know that
the cost of the new path will be optimal and the lower bound
can be updated. Otherwise, the lower bound for the group will
be the sum of the lower bounds for the two merged groups.

We still iteratively increase the maximum group size start-
ing from one, but now we keep the groupings and paths of
the previous iteration along with the lower bound for each
group. Every time we increase the maximum group size, we
can easily tell which groups might not have optimal paths by
simply comparing the lower bound for each group with the
cost of the current set of paths for that group. We can then
start finding new optimal paths for each group that might not
currently have optimal paths, but that is smaller than the max-
imum group size. After new optimal paths are found for a
group, we can update the lower bound for that group. We can
also resolve any conflicts that the new set of optimal paths
creates in the same way as the ID algorithm. If an optimal
path has been found for a group as a result of increasing the
maximum group size, then we must maintain this optimality
during future replans of this group. When we are done re-
solving the conflicts introduced by enforcing optimality on a
group with size less than the MGS, we update the highest-
quality solution found so far if our new solution is indeed of
lower cost.

This method allows information obtained in previous it-
erations to be used in subsequent iterations, which reduces
the time of subsiquent iterations. Furthermore, the best solu-
tion so far is updated many times within an iteration, thereby
mitigating the overhead of the last unfinished iteration. A
lower bound on the cost of the optimal solution for the entire
problem can be calculated by adding the lower bounds for all
groups. Once the total lower bound is equal to the cost of
the best solution found, the algorithm can terminate with an
optimal solution. If the algorithm is terminated early, it can
return not only the best solution encountered, but also a lower
bound, which indicates how much the solution could improve
if the algorithm continued.

We refer to this algorithm as the optimal anytime (OA) al-
gorithm. We use OAt to refer to the algorithm when it is
terminated at time t.

Algorithm 3 Optimal Anytime Algorithm
1: call MGS1 to get initial paths and groupings
2: for all G in groups do LB(G)← h(G)
3: set best solution to the MGS1 solution
4: MGS ← 2
5: repeat
6: for all G in groups do
7: if LB(G) < COST (G) and SIZE(G) < MGS then
8: find an optimal path for G with OD
9: LB(G)← COST (G)

10: call a modified Resolve Conflicts
11: update best solution
12: end if
13: end for
14: MGS ←MGS + 1
15: until sum(LB(G)) = COST (best solution)

The pseudocode for our optimal anytime algorithm is pre-
sented as Algorithm 3. For the modified Resolve Conflicts,

OD will prioritize nodes with lowest v(n) and ignore cost
limits if the combined sizes of the conflicting groups is
greater than the MGS, and line 9 was not executed for the
group. When merging two groups, the modified Resolve Con-
flicts will also set the lower bound of the new group to be the
sum of the lower bounds of the old groups.

8 Other Optimizations
Another helpful modification to both OD+ID and our approx-
imation algorithms involves the initial paths used. ID starts
with a path for each agent, and then resolves the conflicts
among those agents. There can be many choices for the ini-
tial paths, however, and a choice with fewer initial conflicts
will lead to fewer replans and group merges. To achieve this,
we find a path for every agent in turn while avoiding colli-
sions with the paths of all previously planned agents when-
ever possible, using the collision avoidance table. We then
repeat this process while also avoiding collisions with paths
found on the previous iteration for agents whose paths have
not yet been planned in the current iteration. This ensures
that the final path we find for every agent avoids a path found
on either iteration 1 or 2 for every other agent. We use this
modification in our experiments for OD+ID and all of our al-
gorithms.

9 Experiments
All of our experiments were run on an Intel Core i7 @
2.6GHz using benchmarks like those proposed in [Silver,
2005] and used in [Standley, 2010]: 32x32 grids were gen-
erated with random obstacles (each cell is an obstacle with
20% probability). Each agent was placed in a random unique
location with a random unique destination.

Just like [Standley, 2010], we use what we call the perfor-
mance curve of an algorithm on a set of instances to convey
how well an algorithm performs on a set of instances. We run
each algorithm on each instance in the set and record the time
taken to solve each instance. For each algorithm, we sort the
instances based on the time taken by that algorithm, and plot
the results. The index of each instance in the sorted sequence
is plotted along the x-axis, and the time taken to solve that
instance is plotted along the y-axis. Note that the ith instance
is a different problem instance for each algorithm’s perfor-
mance curve. Therefore, a performance curve shows the total
number of instances an algorithm would solve if limited to a
certain amount of time per instance.

Figure 2 shows the performance curves of several approx-
imate algorithms on instances that took less than a second
to solve. We randomly generated two sets of 10,000 bench-
mark instances each. Every instance in the first set had 150
agents. Every instance in the second set had 250 agents.
OD+ID, MGS1, MGS2, and HCA* were run on these in-
stances. OD+ID did not solve a single instance in either set
and is not shown. HCA* solved less than half of the instances
in the first set, and only 32 instances in the second set. How-
ever, MGS1, our coarsest algorithm, could solve nearly all
of the instances in under a second each. Even MGS2 could
solve more instances in the first set than HCA* in the time
limit even though it generates much better solutions. Since

10

100

1000

0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

 (
m

s)

Number of Solved Instances

Performance Curves by Algorithm

MGS2 (150) 58.91%
MGS1 (150) 99.92%
HCA* (150) 47.01%

Figure 2: Performance curve for the three approximate algorithms
on two sets of 10,000 very large instances each.

MGS1 finds at least two paths for each agent, MGS1 took
an average of 74.8% longer to solve the instances that were
solved by both MGS1 and HCA*. Still, MGS1 spent an aver-
age of only 0.28 ms per agent when solving these instances.

Furthermore, the MGS algorithm scales nicely to larger
problems. In a similar experiment with 250 agents, MGS1
solved 94.41% if instances in under a second each, while
HCA* solved only 0.32%.

In order to determine the quality of the solutions pro-
duced by our approximate algorithms, 2,500 instances with
60 agents each were randomly generated. Three optimal al-
gorithms, OD+ID, the simple anytime algorithm (SA), and
our optimal anytime algorithm (OA), were each given 30 sec-
onds to optimally solve each instance. When any algorithm
was successful, the optimal solution cost was recorded. To
validate our implementations, we verified that whenever two
or more algorithms optimally solved the same instance, their
solutions had the same cost. Although there were only 60
agents in each instance, only 1,817 of these 2,500 instances
were solved by any optimal algorithm. These 1,817 solved
instances are used to compare the solution quality of our ap-
proximate algorithms. We refer to these solved instances as
our reference instances.

10

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 T

im
e

 (
m

s)

Number of Solved Instances

Optimal Algorithm Performance Curves
SA 65.6%
OA 67.0% (Time to find and verify a solution is optimal)
OD+ID 67.3%
OA (Time to arrive at an optimal solution)
VBA 72.7% (Best of any algorithm)

...

30000

Figure 3: Performance curve and percent solved for three optimal
algorithms on 2,500 instances with 60 agents each, plotted on a log
scale.

Figure 3 shows the performance curves for our optimal al-
gorithms on these 2,500 instances. We plot the performance
of OA for finding an optimal solution and for finding and
verifying an optimal solution separately. The time to find an
optimal solution is the time taken to first encounter that solu-

tion, which was usually before the algorithm knew that it was
optimal, because its optimality could not be verified until the
lower bound matched its cost. The performance of OA for
finding and verifying an optimal solution is much better than
that of the simple anytime algorithm and nearly as good as
OD+ID. However, the data show that our algorithm usually
finds an optimal solution even before OD+ID. We have also
plotted the minimum time taken of any algorithm on each in-
stance, called the Virtual Best Algorithm (VBA). Since VBA
solves more instances within a third of the time limit than
any of the algorithms by itself, an algorithm that ran all three
algorithms in parallel would improve the state of the art for
finding optimal solutions.

0

2

4

6

8

10

12

14

0

50

100

150

200

250

300

A
ve

ra
ge

 R
u

n
n

in
g

Ti
m

e
 (

m
s)

A
ve

ra
ge

 N
u

m
b

e
r

o
f

Ex
tr

a
M

o
ve

s Approximate Algorithm Performance

Average Extra Moves (lower is better)
Average Running Time (lower is better)

8
6

%
 s

o
lv

ed

Figure 4: The solution quality and time for our MGS algorithms,
our anytime algorithm, and HCA* on our reference instances.

Four levels of the MGS algorithm and HCA* were run on
our 1,817 reference instances. We also allowed OA to run for
25ms, 50ms, 100ms, and 500ms on the same instances. The
average solution quality and running times are plotted in Fig-
ure 4. Although HCA* ran faster than our MGS algorithms, it
did not solve all of the reference instances. Furthermore, the
solution quality of HCA* was worse than the solution qual-
ity of every MGS algorithm. We see that the paths generated
by the anytime algorithm quickly approach the optimal paths,
and that the algorithm can generate high-quality paths in an
amount of time suitable for applications in digital entertain-
ment. However, the MGS algorithms are a better choice if
one is only concerned with the solution quality obtained in
a specific average amount of time per instance, because they
have less overhead.

10 Limitations
None of our algorithms scale well in highly constrained situ-
ations such as sliding tile puzzles. In prelminary experiments
with 4-connected grids, MGS1 solved 100% of problems with
8 agents on 3x3 grids, but only 15% of problems with 15
agents on 4x4 grids in under 5 minutes each. In highly con-
straind situations, even MGS1 can detect little independence,
and OD must find paths for large groups of agents.

11 Conclusion
We described the general problem of cooperative pathfind-
ing, and showed that our prior optimal approach suggests
complete approximation algorithms with time-quality trade-
offs. We also showed that these algorithms perform better

than existing approximation algorithms on a set of randomly
generated benchmark instances, and that they are capable of
quickly and reliably finding solutions to instances with as
many as 250 agents on a 32x32 grid. We then refined our
complete approximation algorithms into an optimal anytime
algorithm using a low-overhead iterative deepening approach.
We showed that the anytime algorithm is not only competitive
with OD+ID for finding optimal solutions, but also can be ter-
minated early to result in high-quality approximate solutions.

Acknowledgments
This research has been supported by NSF grant No. IIS-
0713178. We also thank Dawn Chen for her many edits, sug-
gestions, and discussions.

References
[Dresner and Stone, 2004] Kurt M. Dresner and Peter Stone. Multi-

agent traffic management: A reservation-based intersection con-
trol mechanism. In AAMAS, pages 530–537, 2004.

[Hart et al., 1968] Peter Hart, Nils Nilsson, and Bertram Raphael.
A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, February 1968.

[Hearn and Demaine, 2005] Robert A. Hearn and Erik D. Demaine.
PSPACE-completeness of sliding-block puzzles and other prob-
lems through the nondeterministic constraint logic model of com-
putation. TCS, 343(1-2):72–96, 2005.

[Hopcroft et al., 1984] J.E. Hopcroft, J.T. Schwartz, and M. Sharir.
On the Complexity of Motion Planning for Multiple Indepen-
dent Objects; PSPACE-Hardness of the Warehouseman’s Prob-
lem. IJRR, 3(4):76–88, 1984.

[Jansen and Sturtevant, 2008a] M. Renee Jansen and Nathan R.
Sturtevant. Direction maps for cooperative pathfinding. In AI-
IDE poster, 2008.

[Jansen and Sturtevant, 2008b] M. Renee Jansen and Nathan R.
Sturtevant. A new approach to cooperative pathfinding. In AA-
MAS 2008 Volume 3, pages 1401–1404, 2008.

[Korf, 1985] Richard E. Korf. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence, 27:97–109,
1985.

[Ryan, 2008] Malcolm R. K. Ryan. Exploiting subgraph structure
in multi-robot path planning. JAIR, 31(1):497–542, 2008.

[Silver, 2005] David Silver. Cooperative pathfinding. In AIIDE,
pages 117–122, 2005.

[Standley, 2010] Trevor Standley. Finding optimal solutions to co-
operative pathfinding problems. In AAAI, pages 173–178, 2010.

[Surynek, 2009] Pavel Surynek. An application of pebble motion
on graphs to abstract multi-robot path planning. In ICTAI, pages
151–158, 2009.

[Svestka and Overmars, 1996] P. Svestka and M. H. Overmars. Co-
ordinated path planning for multiple robots. Technical Re-
port UU-CS-1996-43, Department of Information and Comput-
ing Sciences, Utrecht University, 1996.

[Wang and Botea, 2008] Ko-Hsin Cindy Wang and Adi Botea. Fast
and memory-efficient multi-agent pathfinding. In ICAPS, pages
380–387, 2008.

