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ABSTRACT OF THE THESIS

Optimal and Anytime Approximation Algorithms for
Cooperative Pathfinding Problems

by

Trevor Scott Standley
Master of Science in Computer Science

University of California, Los Angeles, 2010

Professor Richard Korf, Chair

In cooperative pathfinding problems, non-interfering paths that bring each agent from

its current state to its goal state must be planned for multiple agents. We present the

first practical, admissible, and complete algorithm for solving problems of this kind.

We also present a class of complete approximation algorithms, and an anytime algo-

rithm suitable for real-time use. To this end, we first propose a technique called operator

decomposition, which can be used to reduce the branching factors of many search al-

gorithms, including algorithms for cooperative pathfinding. We then show how a type

of independence common in instances of cooperative pathfinding problems can be ex-

ploited. We show empirically that these techniques dramatically improve the perfor-

mance of the standard admissible algorithm for the cooperative pathfinding problem,

and that their combination results in a complete algorithm capable of optimally solv-

ing relatively large problems in milliseconds. Next, we discuss how modifications to

our complete and optimal algorithm can result in the first complete approximation algo-

rithm capable of solving very large problems. We conclude by presenting an anytime

algorithm that quickly finds a solution, and then uses any remaining allotted computa-

tion time incrementally improving that solution until it is optimal.
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CHAPTER 1

Introduction

Pathfinding, or planning a route to a destination that avoids obstacles, is a classic prob-

lem in AI. When only a single agent is present, the problem is usually effectively solved

using the A* algorithm [HNR68]. When the problem contains multiple agents, how-

ever, care must be taken to avoid computing a solution that leads any subset of agents

to conflict, for example, one that requires two agents to occupy the same space at the

same time. While cooperative pathfinding is becoming increasingly important in modern

video games, it has many applications outside of entertainment, such as robotics, avia-

tion, and vehicle routing [WB08, SO96]. This thesis is an extended version of [Sta10],

and includes an additional chapter on approximation.

1.1 Problem Formulation

There are many distinct types of cooperative pathfinding problems, and each can be

solved using a variant of our algorithm. One example is planning the motions of robotic

arms, each of which must accomplish a separate goal without moving into one another.

Scheduling trains in a railroad network without sending a pair of trains on a collision

course, and deciding actions for automobiles approaching an intersection so that each

may pass through safely and quickly [DS04] are also cooperative pathfinding problems.

For the sake of clarity, simplicity, and comparison to existing algorithms, the testbed for
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Figure 1.1: A small random grid world instance. Cars represent initial agent positions. Flags

represent destinations. Obstacles are in black.

our algorithm will be an eight-connected grid world like the one in Figure 1.1.

In this formulation, each agent occupies a single cell of the grid world, and has a

unique destination. During a single timestep, each agent either waits, or moves to any of

its free adjacent cells. A cell is free if it does not contain an obstacle. Diagonal moves

are allowed even when the two cells adjacent to both the starting cell and the diagonally

adjacent cell are obstacles. The cost of a single agent’s path is the total number of

timesteps that agent spends away from its goal, and the cost of the entire solution is the

sum of all path costs. Two agents must not occupy the same tile at the same time.

Moreover, transitions in which agents pass through each other including diagonal

crossing are prohibited even when those agents never occupy the same position dur-

ing the same timestep such as those in Figure 1.2. However, we do allow rotational

transitions like the ones depicted in Figure 1.3.
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Figure 1.2: Agents cannot pass through each other.

Figure 1.3: Our formulation of the cooperative pathfinding problem allows rotational moves,

which result in each agent occupying a previously occupied cell.
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1.2 Related Work

Unfortunately, it has been shown to be PSPACE-hard to compute any set of paths that

bring each agent to its goal state without conflict in several cooperative pathfinding

domains, even those without obstacles [HSS84, HD05]. Furthermore, the standard ad-

missible algorithm for cooperative pathfinding problems has a branching factor that is

exponential in the number of agents [Sil05]. For these reasons, existing research on

these problems focuses on algorithms for finding good solutions as often as possible

rather than developing optimal and complete algorithms. Our algorithm is complete,

however, and can find optimal solutions to nontrivial problems, often in milliseconds.

There are two basic approaches to solving cooperative pathfinding problems. In the

centralized approach, agents are treated as a composite entity and paths are found for

every agent simultaneously. On the other hand, in the decoupled approach, paths are

found for each agent one at a time, and information about the paths of other agents is

used to ensure that no paths conflict. Centralized approaches typically have the advan-

tage of being complete, but are often intractable for even small numbers of agents, while

decoupled approaches are fast, but inherently incomplete.

Silver describes a decoupled algorithm which he claims is widely used in the video

game industry, Local Repair A* (LRA*)[Sil05]. In LRA*, a path is computed for each

agent independently, and conflicts are not discovered until execution. If the algorithm

discovers that following a solution one step further results in a conflict, the algorithm

re-plans the path of one of the conflicting agents, disallowing only the move that would

immediately result in a conflict. Unfortunately LRA* often results in cycles and dead-

lock. Silver’s solution to this problem, Hierarchical Cooperative A* (HCA*), is another

decoupled approach that focuses on reducing the number of future re-plans by creating

a reservation table for future timesteps. The algorithm chooses an ordering of agents,
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and plans a path for each agent that avoids conflicts with previously computed paths

by checking against the reservation table. While the solutions found by HCA* are sig-

nificantly shorter than those computed by LRA*, the greedy nature of this algorithm

still results in suboptimal solutions. Furthermore, in 4.3% of instances, some agents

never reach their destinations. Finally, this technique offers no option to spend more

computation time to increase either the number of solutions found or solution quality.

Other decoupled attempts establish a direction for every grid position and encourage

or require each agent to move in that direction at every step [WB08, JS08a, JS08b].

These methods reduce the chance of computing conflicting paths by creating the analog

of traffic laws for the agents to follow. While these methods are effective at reducing the

number of incompatible paths, they limit the types of paths that agents can follow, and

thus virtually guarantee that the solutions found will be suboptimal. Moreover, as paths

are still computed one agent at a time, without regard to the consequences that a choice

of path can have on the paths available to other agents, this strategy also suffers from

the problem of deadlock, and therefore some agents may never reach their destinations.

Finally, existing centralized approaches such those presented in [Rya08] and [SO96]

are complete, but do not aim for low solution costs. Furthermore, the time and memory

requirements of these algorithms limit their applicability to problems containing only

100 positions and less than ten agents.

1.3 Problem Complexity

We mentioned in Section 1.2 that complexity results exist for many cooperative pathfind-

ing problems. This section discusses some of these results, as well as results that show

that reachability in some cooperative pathfinding problems can be solved in polynomial

time. We then discuss the implication of these results on the complexity of the particular
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problem formulation described above.

In the warehouseman’s problem, axis aligned rectangles of arbitrary width and height

are packed inside a rectangular box without overlapping. The problem consists of de-

ciding whether a particular configuration of these rectangles can be transformed into

another particular configuration by sliding one rectangle at a time without allowing rect-

angles to overlap. In [HSS84], the authors show that reachability in the warehouseman’s

problem is PSPACE-hard.

The proof of hardness in [HSS84] requires many differently sized rectangles. The

authors of [HD05] have improved this result using a proof that uses only 2x1 and 1x2

rectangles, and have shown that many related problems are also PSPACE-hard.

The warehouseman’s problem is a cooperative pathfinding problem because each

rectangle can be thought of as an agent, and since no rectangles may overlap, there are

constraints between the moves each agent can make. However, this problem differs from

the eight-connected gridworld variant described in Section 1.1 in four ways. First, in the

eight-connected gridworld, agents occupy only one tile at a time, while rectangles in

the warehouseman’s problem have arbitrary dimension. Second, there are no static ob-

stacles in the warehouseman’s problem. Third, agents in the eight-connected gridworld

move simultaneously, and therefore may make rotational moves that are unavailable

to rectangles in the warehouseman’s problem. Finally, the eight-connected gridworld

variant allows diagonal moves, which are not allowed in the warehouseman’s problem.

If rectangles in the warehouseman’s problem are required to be 1x1, the reachability

problem becomes easy. In [KMS84] the authors present a polynomial-time algorithm

for determining whether a configuration of the pebble motion problem can be solved. In

the pebble motion problem, agents each occupy a single node in a graph and can suc-

cessively move to an adjacent empty vertex. The reachability problem asks whether a
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particular assignment of agents to nodes can be transformed into another. Since a grid-

world is a special case of an arbitrary graph, these results apply to the warehouseman’s

problem in which rectangles must be 1x1. Solving this problem optimally, however,

is NP-hard because it is a generalization of sliding-tile puzzles such as the 15-puzzle,

and it is NP-complete to determine whether a particular instance of a sliding tile puzzle

can be solved in under a given number of moves[RW90]. Furthermore the authors of

[KMS84] prove a polynomial upper bound on the number of moves in a shortest path for

a solution, placing the decision variant of the pebble motion problem (deciding whether

there exists a path of length k) in NP, and making the decision problem NP-complete.

Although we are unaware of any hardness results for problems in which agents can

make rotational moves, adding diagonal moves does not change the complexity of the

problem when obstacles are allowed1. By placing obstacles onto the grid in a checker-

board fashion, we can force agents to always make diagonal moves. This is equivalent to

a 4-connected grid. Therefore, any hardness results that apply to 4-connected gridworld

problems also apply to 8-connected gridworld problems.

We see from a result in [KMS84] that if rotational moves were not allowed, finding

an optimal path for an instance of the 8-connected gridworld variant would be NP-hard,

and the path would contain a polynomial number of moves. Because the problem is

relaxed when rotational moves are allowed, we also see that any instance solvable in the

case in which there are no rotational moves remains solvable in our variant, and will

require only a polynomial number of moves to solve optimally. It is therefore tempting

to place the problem of finding optimal paths in NP, but there are problems that require

rotational moves to solve, and it is possible that some of those problems may have super-

polynomial length paths. However, it is also possible that the problem of finding optimal

1A problem with rotational moves has been studied in [KMS84], but results were only obtained on
special case graphs with one agent per node.
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Problem Variant Reachability Finding any Finding an
solution optimal solution

Only 1x1 rectangles P P NP-hard

Only 2x1 & 1x2 rectangles PSPACE-hard PSPACE-hard PSPACE-hard

Only 1x1 rectangles.
Obstacles allowed. P ? NP-hard

Only 1x1 rectangles.
Rotational moves allowed. ? ? ?
Obstacles allowed.

Table 1.1: The complexity of various variants of the warehouseman’s problem.

paths in our formulation is easier than finding optimal paths when rotational moves are

not allowed. However, it is unlikely that prohibiting rotational moves would have much

of an effect on the difficulty of the test instances for our algorithm, and our algorithm

could be easily adapted to any of the problems discussed in this section including those

without rotational moves.

Table 1.1 summarizes these complexity results. The cooperative pathfinding prob-

lem presented in Section 1.1 is as hard as the warehouseman’s problem variant in which

rectangles must be 1x1, rotational moves are allowed, and obstacles are allowed. It’s

interesting to note that the authors of [KMS84] were only concerned with solving the

reachability problem, and it is possible that their technique could yield a polynomial al-

gorithm for finding a solution to the warehouseman’s problem in which rectangles must

be 1x1, and obstacles are allowed. If this were to be accomplished there would be a

polynomial time algorithm for finding a solution to the problem studied in all of the

papers presented in the related work section which are all a special case of the pebble

motion problem. However, the solutions found might not have low costs.

Recent publications on grid based pathfinding problems, such as [Sil05], [GCB06],
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and [WB08] often cite [HSS84] as containing a PSPACE-hardness result for cooperative

pathfinding. However, as their algorithms are only demonstrated in the case in which

all rectangles are 1x1, it seems that at least the reachability versions of their problems

are solvable in polynomial time. Furthermore, even solving their problems optimally is

only NP-hard and unlikely to be PSPACE-hard unless NP=PSPACE. This is because the

path (which is of polynomial size) is a proof that a particular instance can be solved in a

certain number of moves, and so the decision problem is in NP. Therefore, the result of

[HSS84] for the warehouseman’s problem does not apply.
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CHAPTER 2

Finding Optimal Solutions

2.1 The Standard Admissible Algorithm

The standard admissible algorithm for the eight connected gridworld variant is A* with

the following problem representation: A state is an n-tuple of grid locations, one for

each of n agents [WB08]. The standard algorithm considers the moves of all agents

simultaneously at a timestep, so each state potentially has 9n legal operators. Each of

these legal operators is a solution to the constraint satisfaction problem in which each

agent must be assigned a move from {N, NE, E, SE, S, SW, W, NW, and wait}, and

there are constraints between sets of legal moves. For example, these legal moves must

not lead two agents to pass through each other. In order to generate these operators, a

backtracking search is employed to efficiently find all solutions to the CSP at every node

expansion. In practice, these CSPs are not difficult, and most of the 9n combinations of

moves are legal. The cost of each operator is the number of agents not executing the

wait move while at their goal position. An admissible heuristic, like the one presented

in a later section, is always coupled with this algorithm.

While this method can be used to solve some trivial problem instances, each node

expansion can add approximately 59k nodes (approximately 1.5MB in our implementa-

tion) to the open list when run on an instance with only 5 agents.

In many of the successors of a given node, the majority of agents have moved farther
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Algorithm 1 The Standard Algorithm (A*)
1: open← {(start, h(start))}

2: closed← {}

3: while open 6= {} do

4: x← deletemin(open)

5: closed
add←−− x

6: if x is goal then

7: reconstruct the path and return

8: end if

9: find each legal successor of S using a backtracking search

10: for each legal successor S of x do

11: if S 6∈ closed then

12: g(s)← g(x) + numAgentsNotStoppedOnGoal(S)

13: f(S)← h(S) + g(S)

14: remove any copy S′ from open

15: open
add←−− min((S, f(S)), (S′, f(S′)))

16: end if

17: end for

18: end while

11



from their goals, resulting in nodes that have heuristic values as much as n units greater

than the heuristic values of their parents. There are typically an exponential number of

such unpromising nodes, and A* generates them all, placing each onto the open list.

This suggests that the standard algorithm can be improved.

2.2 Operator Decomposition

In the standard algorithm, every operator advances a state by one timestep and poten-

tially changes the position of every agent. We propose a new representation of the state

space in which each timestep is divided so that agents are considered one at a time and

a state requires n operators to advance to the next timestep. In this representation, a

state not only contains a position for every agent, but also contains zero or one move

assignments for every agent.

An operator in this representation consists of assigning a move to the next unas-

signed agent in a fixed order, leaving the moves of the remaining agents to descendant

nodes within the same search. The new state representation has a branching factor of 9

rather than 9n, but because each operator only advances a single agent rather than every

agent, the depth of a goal node increases by a factor of n. We call this technique A*

with operator decomposition (OD) because the standard operators are decomposed into

a series of operators.

Under this representation, there are two conceptually different types of states. We

refer to standard states as those in which no agent has been assigned a move, and inter-

mediate states as those in which at least one agent has been assigned a move. Assigning

a move to the last unassigned agent in an intermediate state results in a standard state

which is at the next timestep. Note that while these states are conceptually different,

A* treats them equivalently, so, in general, the open list will contain both standard and

12



Figure 2.1: An example in which naı̈ve OD would fail.

intermediate nodes, as well as nodes from multiple timesteps.

For a given state, we refer to a post-move position as the position that an agent will

have after it follows the assigned move, and a pre-move position as the position an agent

has before it follows an assigned move. We may refer to the positions of agents without

assigned moves as either pre-move or post-move positions. Note that within a node, the

pre-move positions for every agent are the positions of the agents at a single common

timestep.

Note that the h() and g() value for an intermediate node will be different from that

of its most recent standard ancestor node. This is because some of the post-move posi-

tions may be different than the pre-move positions. Therefore, A* can sometimes avoid

expanding intermediate nodes because of cost. The standard algorithm, however, cannot

because it uses backtracking search to solve the CSPs which has no concept of cost. It

can only prune configurations that are illegal.

Unfortunately, OD will not guarantee optimal solutions if the implementation is

naı̈ve. Consider the situation depicted in Figure 2.1. If the algorithm considers agent 1

first, then it might conclude that it has only two legal moves (N,wait). However, the

optimal solution requires that agents 1 and 2 both make the move E first. The problem

with this naı̈ve version of OD is that it is too strict. It restricts the types of moves an

13



Figure 2.2: The search tree of A* with OD for one timestep. Pre-move positions are shown.

Move assignments are marked with arrows.

agent can make on the basis of every other agent’s post-move position1. The algorithm

should require that a new move assigned to an agent be consistent with the existing as-

signments of moves to agents in a node, but the algorithm should allow agents to move

into spaces occupied by agents who are yet to be assigned moves within a node.

Consider again the example of Figure 2.1. When OD is used correctly, A* starts by

placing three nodes onto the open list because agent 1 can be assigned N , E, or wait.

Note that both agents have the same post-move position in the node in which agent 1

is assigned E (node C). This is acceptable because agent 2 has not yet been assigned a

move. Then, when that node is chosen for expansion, A* considers assigning agent 2

the move E. The algorithm then checks to see that the move assignment [1 : E, 2 : E]

1Recall that when the agent has not yet been assigned a move, its post-move position is the same as
its pre-move position
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is legal (because agent 1 has already been assigned a move in this node) and places

the resulting child node (node F) onto the open list. The operators wait and W are

also checked, but discarded (because the move assignment [1 : E, 2 : wait] results in

two agents overlapping, and the move assignment [1 : E, 2 : W ] results in two agents

passing through each other.

We see in Figure 2.2 that OD generates five nodes during the first timestep in this

example, three intermediate nodes, and two standard nodes. On the other hand, the stan-

dard algorithm generates eight successor nodes from the start state because [wait, wait],

[wait, E], [wait,NW ], [N,wait], [N,E], [N,W ], [E,E], and [E,NW ] are all legal

standard operators from the start state. If OD was not pared with a heuristic, then nodes

B and D would each generate three standard successors, and we would have generated

eight standard nodes, in addition to three intermediate nodes. These additional six stan-

dard nodes, are not generated by A* because their cost is too high. For both algorithms,

a node in which both agents have made the move E is expanded next.

When coupled with a perfect heuristic and a perfect tie-breaking strategy, A* search

generates b × d nodes where b is the branching factor, and d is the depth of the search.

Since the standard algorithm has a branching factor of approximately 9n and a depth

of t (the number of timesteps in the optimal solution), A* search on the standard state

space generates approximately (9n)t nodes when coupled with a perfect heuristic. A*

with OD, however, will generate no more than 9nt nodes in the same case because

its branching factor is reduced to 9, and its depth only increases to n × t. This is an

exponential savings with a perfect heuristic.

OD is capable of generating every legal successor of a standard node for any chosen

order of agents by assigning the appropriate move to each agent in turn. Therefore, A*

with OD is admissible and complete for all choices of agent order due to the admissibil-
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ity and completeness of the standard A* algorithm.

Since agents can be considered in any order, it is natural to ask which order should

be preferred, but we were unable to find an agent ordering strategy that was worth the

overhead. Our implementation simply chooses an arbitrary static ordering of the agents.

This order expands slightly more nodes to find a solution than our best agent ordering

heuristic, but expands many more nodes per second.

When the standard heuristic evaluation function for a search problem can be applied

to intermediate nodes, OD will save both time and space. All cooperative pathfinding

problems have this property because the value of the heuristic can change when a single

agent changes its position, but other problems with combinatorial branching factors may

benefit from operator decomposition as well.

A* detects duplicate nodes in order to avoid redundant node expansions. One way

that A* detects duplicate nodes is through the use of a closed list which stores every

node that has been expanded. Like many cooperative pathfinding problems, the state

space of the eight-connected grid world variant grows only polynomially with depth

(although it is exponential in n). Therefore, because the number of nodes in the search

tree grows exponentially with depth, duplicate detection is essential.

The intermediate descendants of a standard node form a tree rooted at the standard

node because another move assignment cannot be made to an agent until all agents have

been assigned moves, and nodes with different move assignments cannot be the same.

Because duplicate intermediate nodes would have duplicate standard ancestor nodes,

A* will never encounter duplicate intermediate nodes because their standard ancestors

would be duplicates, and one would have been pruned. Therefore, it is reasonable to

put only standard nodes onto the closed list. Empirically, this modification reduced

the size of the closed list by nearly 93% while improving running time in preliminary

16



Figure 2.3: Two pairs of similar intermediate states.

experiments.

Alternatively, we can sometimes safely treat nodes that are not equal, but have the

same post-move positions, as duplicates. Observe in Figure 2.3 that both (A) and (B)

have the same post-move positions. Also, the set of possible moves for agent 2 that

do not conflict with agent 1’s move is the same in both (A) and (B). These nodes will

therefore have the same set of standard descendants, and the algorithm can safely treat

them as duplicates. However, agent 2 cannot legally move NE in state (C), but it can in

state (D), so treating these states as duplicates would be incorrect even though they have

the same post-move positions. This example also shows the importance of storing move

assignments in addition to positions in a state. Enabling the algorithm to treat nodes like

(A) and (B) as duplicates is well worth the overhead and is used in our experiments.

2.3 The Heuristic

A* makes use of an estimate of the true distance to the goal for every state. This allows

A* to intelligently search only a relevant subset of the search space. If this heuristic

never overestimates the cost from a state to a goal state, it is called admissible, and A*

will return optimal solutions[HNR68]. If the value of the heuristic for a state is never

smaller than the heuristic of its parent by more than the cost to move from the parent to

the state, the heuristic function called consistent.

One admissible and consistent heuristic for a state in any cooperative pathfinding
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problem is the sum of the costs of the optimal single-agent paths for all agents. Con-

ceptually, these distances could be obtained by running a single-agent search for every

agent whenever A* generates a node. However, we can simply run a breadth-first search

from an agent’s goal position to every free grid position to precompute a table of the

single agent distances for every agent at every position. During the A* search with OD,

the change in heuristic value from a state to a child state is due to the move assignment

for a single agent. The change in heuristic value is the difference between the table entry

for the agent’s post-move position and the table entry for the agent’s pre-move position.

So the heuristic can be updated using two table lookups. One could also use Reverse

Resumable A* (RRA*) [Sil05] to fill in the table values, which improved the efficiency

of the breadth-first search option by a small additive constant (less than a millisecond)

for each agent in our preliminary experiments.

RRA* was proposed to find heuristic values for single agent search problems, but it

is equally applicable to multi-agent search, because the sum of single agent heuristics

is admissible for cooperative search. The idea is to run the single agent A* algorithm

backward from an agent’s goal position for each agent. The heuristic for this single

agent reverse search, Chebyshev distance23, is consistent as well as admissible for the

single agent search. Because of the consistency property, when a node in this search

is placed on the closed list, the g() cost of this node will be the true distance from the

agent’s position within that node, to the agent’s goal position[Nil82].

Our algorithm sets up one RRA* search for each agent. Each search is parameterized

by two positions. These positions do not change throughout the search. The first is the

agent’s start position in cooperative pathfinding problem. This position is made the

goal for RRA*. The second is the agent’s goal position in the cooperative pathfinding

2Chebyshev distance is the analog of Manhattan distance when diagonal moves are allowed.
3All moves have unit cost.

18



problem. This position is made the start state for RRA*. Each RRA* is initially paused,

but can be resumed at any time.

When the cooperative pathfinding algorithm needs a heuristic value for a state, it

checks each of the RRA* closed lists to see if it contains the right position for the agent

being moved during this node expansion. If it does contain the right position for the

agent, it uses the g() cost of that node in the closed list as the table entry. If it does not,

it tells the RRA* for the agent what position it needs it to find, and resumes it. RRA*

continues its search until it expands the needed node, and then pauses. The closed list

for this RRA* will then contain the needed value.

Note that RRA* does not stop when its goal node is expanded. The goal node is only

needed as a reference to calculate the heuristic (Chebyshev distance) for each newly

generated node. After the goal node is expanded, RRA* will continue expanding nodes

in best first order, and placing them onto the closed list until the entire search space is

explored or the needed value is found, in which case RRA* is paused.

The effectiveness of RRA* depends on the size of the map, and the average distance

an agent must travel. The experiments described in the experiments section, which were

run on 32x32 maps, reveal that only about 16% of the search space is explored by RRA*

on average. When the mapsize is increased to 100x100, this proportion falls to about

10%.

2.4 Partial Expansion

The operator decomposition technique is useful for reducing the number of moves con-

sidered by the standard algorithm, but many of the moves considered by the algorithm,

even with operator decomposition, are often unnecessary. This section describes a way

to further reduce the number of considered moves if operator decomposition is applied.
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In [YMI00], the authors outline a technique helpful for reducing the memory re-

quirements of problems with large branching factors. They call their technique partial

expansion. Partial expansion is a modification to A*, and works like this: when a node

is removed from the open list for expansion, the algorithm generates each possible child

and determines the k1 + 1 children with the lowest heuristic values. The algorithm only

puts the k1 best children onto the open list in the hopes that one will lead to the optimal

solution. The rest of the children are discarded and the original node is put back onto

the open list with the heuristic value of the (k1 + 1)st child for possible re-expansion. If

the node is re-removed from the open list, then the next best k2+1 children of that node

are determined and the best k2 of those are put onto the open list and so on. Thus, even

if any optimal path must go through a child that does not initially look promising (and

therefore is not initially put onto the open list), the parent will be reconsidered, and the

children will be put onto the open list after all.

During this process, nodes are often regenerated and their heuristics are recomputed.

If memory is the bottleneck, then this is not very important, however for video games

and other real time applications, memory is often a secondary consideration. Further-

more, the branching factor of the algorithm with operator decomposition is only 9. Thus

it may seem that the idea of partial expansion provides little benefit for a problem such

as this, however if we use operator decomposition for this problem, it is possible to pre-

compute which k + 1 children will have the lowest heuristic values and store the result

for real-time use.

It is not complicated to update RRA* or backward breadth-first search to store which

move brings the agent closest to the goal, in addition to the heuristic value. It can even

be updated to store the k+1 such moves for an agent. These moves are those that result

in having the lowest heuristic value.
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Now A* can quickly determine which moves result in the k + 1 states with the best

heuristic values, and can generate only those nodes in time linear in k.

Our preliminary implementation used k1 = 1, k2 = 3, and k3 = 5, and thus only

had to store pointers for the best 5 moves using 15 bits total. With this scheme, the ratio

of the final size of the open list to the final size of the closed list is reduced from about 7

to less than 3, resulting in about a 2x improvement in runtime, as well as a 2x reduction

in memory use.

2.5 Independent Subproblems

Although operator decomposition allows the algorithm to avoid considering a substan-

tial portion of the search space, the resulting algorithm is still exponential in the number

of agents. It would be ideal if one could plan a path for each agent independently as

in the decoupled approach. This seems to be the intuition behind most inadmissible al-

gorithms developed up to this point [Sil05, JS08b, DS04, WB08]. In order to preserve

optimality and completeness, slightly more general idea is considered which involves

independently planning optimal paths for disjoint and exhaustive subsets of the agents.

If these paths were all found to not interfere with one another, then the total solution

obtained would be optimal.

As a motivating example, consider the problem of planning automobile traffic. The

problem of planning traffic in Australia is independent of the problem of planning traffic

in Japan, and the problem of planning the routes of the only three people driving in the

same town at 3am may be independent if they don’t cross any of the same intersections

at the same times.

In general, we would like to have an algorithm for partitioning the agents into dis-

joint sets in such a way that the optimal paths computed for each set of agents do not
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interfere with the others. This way, we can be sure that the combined solution is optimal.

In order to discover such a partitioning, we developed the simple independence de-

tection (SID) algorithm, which assumes that the paths for all agents will be independent,

and cooperatively recomputes the conflicting paths using an optimal algorithm like op-

erator decomposition if this assumption fails. Because the planning time is exponential

in the size of the largest group, the largest replan dominates the running time.

Algorithm 2 Simple Independence Detection
1: assign each agent to a singleton group

2: plan a path for each group

3: repeat

4: simulate execution of all paths until a conflict occurs

5: merge two conflicting groups into a single group

6: cooperatively plan new group

7: until no conflicts occur

8: solution← paths of all groups combined

9: return solution

To simplify the explanations below, we only consider the case in which conflicting

groups consist of single agents (the extension to general groups is straightforward).

We can improve SID by making the following observation: Each agent will usually

have many optimal paths to its goal, and whether two agents are found to be independent

depends on which two paths the algorithm finds initially. Therefore, we can sometimes

avoid merging the groups of two agents whose paths conflict by finding another optimal

path for either agent. In order to ensure optimality, the new path for an agent must

have the same cost as the initial path. We refer to this as the optimality constraint of

independence detection. Furthermore, the new path must not conflict with the other

agent. To realize these goals, we can give the search algorithm a cost limit and an illegal
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move table which is populated just before finding an alternate path.

If two agents a1 and a2 conflict, and we decide to replan the path of a1, we would

populate the illegal move table with the transitions a2 makes when following its current

path at every timestep. When the search algorithm expands a node while replanning the

path for a1, it checks the table at that node’s timestep to see which possible moves will

not conflict with a2’s move for that timestep. If such a path is found, then the conflict

between these two agents has been resolved.

During these replans, it is important that the algorithm finds a path that creates the

fewest conflicts with other agents. This can be achieved using a table similar to the

illegal move table, called the conflict avoidance table, which stores the moves of all

other agents for every timestep. A* will typically have a choice between several nodes

with the same minimum f() cost to expand first, and tie breaking is usually done in

favor of nodes with the lowest h() value to achieve the best performance. Alternatively,

each node can keep track of the number of conflict avoidance table violations that have

occurred on the path leading up to this node, and break ties in favor of nodes with

the fewest violations, only relying on the h() to break ties when nodes have an equal

violation count as well as f() cost. This method ensures that the path returned during

the replan will lead to the fewest future conflicts of any optimal path.

This is the intuition behind our improved independence detection algorithm (ID),

which starts by assigning each agent to its own group. It then finds an initial path for

each agent independently. Upon detecting a conflict between the current paths of two

agents, the algorithm attempts to find an alternate optimal path for one of the conflicting

agents, ensuring that the new path does not conflict with the other agent. If this fails,

it tries this process with the other conflicting agent. Finally, if both attempts to find

alternate paths fail or two agents that have conflicted before are found to conflict again,
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Algorithm 3 Independence Detection
1: assign each agent to a group

2: plan a path for each group

3: fill conflict avoidance table with every path

4: repeat

5: simulate execution of all paths until a conflict between two groups G1 and G2 occurs

6: if these two groups have not conflicted before then

7: fill illegal move table with the current paths for G2

8: find another set of paths with the same cost for G1

9: if failed to find such a set then

10: fill illegal move table with the current paths for G1

11: find another set of paths with the same cost for G2

12: end if

13: end if

14: if failed to find an alternate set of paths for G1 and G2 then

15: merge G1 and G2 into a single group

16: cooperatively plan new group

17: end if

18: update conflict avoidance table with changes made to paths

19: until no conflicts occur

20: solution← paths of all groups combined

21: return solution
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the algorithm merges the conflicting groups and cooperatively plans a path for this new

group without a cost limit or illegal move table. All plans are found with a conflict

avoidance table which is kept up to date so that every path always results in the fewest

number of future conflicts.

These independence detection algorithms do not solve pathfinding problems on their

own. They simply call a search algorithm many times on subproblems allowing that al-

gorithm to solve many smaller problems rather than the full problem. The independence

detection algorithms can use the standard algorithm or operator decomposition as the

underlying search algorithm. ID will merge two groups and run a search algorithm on

the combined group if it cannot find nonconflicting paths for both groups. Therefore ID

is complete when coupled with a complete search algorithm. Both OD and the standard

algorithm are complete.

The independence detection algorithm combines the strengths of both the central-

ized and decoupled approaches to cooperative pathfinding. The algorithm detects when

centralized planning is necessary, and uses decoupled planning otherwise.

2.6 Experiments

Experiments were run on an Intel Core i7 @ 2.8GHz using benchmarks like those pro-

posed in [Sil05]: 32x32 grids were generated with random obstacles (each cell is an

obstacle with 20% probability). Each agent was placed in a random unique location

with a random unique destination.

The inadmissible algorithm, hierarchical cooperative A* (HCA*), from [Sil05], and

admissible combinations of the standard algorithm (S), operator decomposition (OD),

and independence detection (ID) were run on the same 10,000 instances with a random

number of agents chosen uniformly between 2 and 60. Figure 2.4 shows the running
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Figure 2.4: Running time of each instance for each algorithm.

time of each algorithm on instances that took less than a second to solve, sorted in

ascending order of solution time for each algorithm. The performance of the standard

algorithm was highly dependent on the number of agents in the problem, which leads

to the stair-step shape observed in the graph. When ID is used, OD not only helps on

easy problems, solving them more quickly, but more importantly allows the algorithm

to solve the harder problems. OD+ID optimally solved 90.45% of the problems in under

a second each. Note that the one second time limit is arbitrary and can be increased in

case of hard instances.

Only 69 instances were not solved by either OD+ID or HCA*. Moreover, OD+ID

solved 361 out of the 430 problems that HCA* did not solve even though the problems

had to be solved optimally for OD+ID. In the problems that were solved by both algo-

rithms and had more than 40 agents, the optimal solutions were an average of 4.4 moves

longer than the the heuristic lower bound, while the solutions produced by HCA* were

an average of 12.8 moves longer than the heuristic lower bound.

ID partitions a problem instance into subproblems, and the subproblem with the
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Figure 2.5: Proportion of largest non-independent subproblems given by ID solved within two

seconds by OD and S.

highest number of agents typically dominates the computation time for the instance.

Experiments show that the strongest indicator of running time on these instances was

indeed the number of agents in the largest non-independent subproblem solved by OD.

An exponential regression yielded the equation t = 0.465e1.14s where t is time (ms)

taken for OD+ID to solve a problem, and s is the number of agents in the largest non-

independent subproblem of ID. The regression equation had an R2 of 0.77. Figure 2.5

shows the results of OD and S on the largest such subproblem solved during each of

the above 10,000 instances. In this experiment, OD and S are given two seconds to

solve each subproblem regardless of what time was spent solving other subproblems

before reaching this subproblem. Since ID could not detect independence within these

subproblems, these problems are more challenging for OD and S than random instances

with the same number of agents. The ability of the standard algorithm to solve these

problems degrades quickly with problem size. In contrast, not only can operator de-

composition solve larger problems reliably, but its ability to solve these problems also

degrades more slowly with problem size.
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CHAPTER 3

Approximation Algorithms

Many applications, especially those in digital entertainment, demand real-time perfor-

mance and it is often acceptable to sacrifice path quality to satisfy this demand. There

have been many algorithms suggested for this purpose, and some are described within

this thesis. Unfortunately, we know of no existing algorithms that provide a method for

spending more time to achieve better solutions, and all previously proposed complete

algorithms are intractable even for small numbers of agents and small graphs. However,

the algorithm outlined so far in this thesis can be easily extended to create an approxi-

mation that is not only complete, but can also offer a trade-off between solution quality

and computation time.

3.1 Complete Approximation Algorithms

There are two constraints within the OD+ID algorithm that force resulting solutions to

be optimal. The first is the optimality constraint of independence detection previously

mentioned on page 22, which gives operator decomposition a cost limit equal to the op-

timal cost for a group so that it either produces another nonconflicting optimal solution,

or reports that there is none. The other, which is discussed on page 23, constrains A* to

expand nodes in order of lowest f() cost rather than in an order which would minimize

future conflicts for ID.
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In order to produce a fast and complete algorithm, it suffices to drop these two con-

straints. Dropping the optimality constraint of independence detection allows OD to

search for alternate paths of any length during ID rather than just paths that are known

to be optimal, and therefore makes it much more likely that an alternate path will be

found so that the groups will not be merged. Dropping the second constraint results

in fewer future conflicts. This is accomplished by modifying the order in which A* ex-

pands nodes on the open list to give priority to nodes with the fewest collision avoidance

violations before nodes with the lowest f() cost.

A generalization of this idea results in a parameterized algorithm that offers the time-

quality tradeoff mentioned above. We first define a parameter called the maximum group

size. We then drop the two above constraints only when merging two groups would

result in a group that exceeds the maximum group size. This leads to a spectrum of

approximations. If the maximum group size is one, this algorithm will always drop the

two constraints, while larger maximum group sizes cause the algorithm to take longer,

but produce paths that have lengths closer to optimal.

Note that it is possible that independence detection produces a group larger than

the maximum group size. This will happen when no paths of any length exist for two

conflicting groups of agents that solve the conflict. In this case, ID will merge the groups

as usual to maintain completeness. Fortunately, this does not happen very often as there

are an exponential number of possible alternate paths, so there usually exist paths which

solve the conflict that the algorithm can find.

Weighted A* (WA*) [Poh70], which is also complete, can theoretically improve the

running time of OD+ID further (at the expense of optimality). WA* is the same as A*

search, but the f() cost is calculated using a specific inadmissible heuristic constructed

by multiplying the admissible heuristic by a constant w > 1 thereby allowing A* to
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more greedily search for a goal. Theoretically, this would reduce the time needed to find

alternate paths for a group of agents. Unfortunately, preliminary experiments showed

that WA* did not significantly improve the performance of this algorithm, but did de-

grade the quality of the approximation.

We call these algorithms the maximum group size algorithms (MGS), and denote an

MGS algorithm with a specific maximum group size as MGSn where n is the maximum

group size.

3.2 Lower Bound Algorithms

An entirely different approximation than the one mentioned above produces an arbitrar-

ily accurate lower bound on the cost of a solution. When given a cooperative pathfinding

problem, this algorithm produces a number that is guaranteed to be smaller than the cost

of an optimal solution.

This lower bound can be obtained by ignoring some of the collisions detected by ID.

Once again, we define a maximum group size parameter. Collisions that would result in

groups larger than the maximum group size are simply ignored. Again, larger maximum

group sizes will cause our lower bound algorithm to run for longer before completion,

but larger group sizes will also allow the algorithm to explore the interactions between

larger groups of agents, which will produce tighter bounds.

The paths obtained during independence detection will contain conflicts in general,

so the lower bound algorithm cannot be used to find valid solutions, but perhaps this

modification could be useful in providing accurate heuristic evaluation functions for

larger cooperative pathfinding problems, or sliding-tile puzzles.

We call these algorithms the lower bound algorithms LB, and denote an LB algo-
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rithm with a specific maximum group size as LBn where n is the maximum group size.

3.3 Anytime Approximation Algorithms

Ideally, one would choose how much time to devote to solving a problem, and the algo-

rithm would find the highest quality path it could in the amount of time alloted. Unfor-

tunately, the approximation algorithms presented above do not solve the problem in this

way. Once given a maximum group size, they spend an unspecified amount of time to

return a result, and there are no meaningful intermediate results.

One way that the approximation algorithms could be adapted for anytime use is

inspired by iterative deepening[Kor85]. First, the algorithm uses a maximum group

size of 1. Once it has found a solution and if time still remains, it starts over with a

maximum group size of 2. It continues to incrementally increase the maximum group

size until the time has run out. When the time has run out, it returns the highest quality

solution it encountered on any of its runs. Since the running time is roughly exponential

in the maximum group size, this adds a constant amount of overhead for incomplete and

unused iterations.

While this approach is a useful anytime algorithm, all of the work done for previous

iterations is lost completely. Since the algorithm seems to run in time exponential in

the maximum group size, this adds only a constant amount of overhead. The algorithm

can be improved, however, by making use of the information obtained during previous

iterations. Furthermore, by updating the optimal path more frequently, the overhead of

incomplete iterations is minimized.

We start by labeling each group with a lower bound on the cost of any paths for that

group. The initial label for each singleton group is simply the initial heuristic value for

that agent. When groups are merged, the algorithm must cooperatively plan a path for

31



the new group. If the size of that group is less than or equal to the current maximum

group size, then the cost of the new path will be optimal, and so the lower bound can be

updated. Otherwise, the lower bound for the group will be the sum of the lower bounds

for the two newly merged groups.

We will still iteratively increase the maximum group size starting from 1, but now

we will keep the groupings and paths of the previous iteration along with the lower

bounds for each group. Every time we increase the maximum group size, we can easily

tell which groups may not have optimal paths by simply comparing the lower bound for

each group with the cost of the current set of paths for that group. We can then start

finding new and optimal paths for each group that might not currently have an optimal

path, but is larger than the maximum group size. After a new optimal path is found for

a group, we can update the lower bound for that group. We can also solve any conflicts

that this new optimal path creates. Whenever we have nonconflicting paths for every

agent, we can update the highest quality solution if our new solution is indeed of higher

quality.

This method allows some information obtained in previous iterations to be useful

for subsequent iterations, and improves the quality of paths found over the pure itera-

tive deepening approach. This algorithm will produce optimal solutions if allowed to

run indefinitely because every time the maximum group size is increased, we have the

invariant that every group with a size less than the maximum group size has locally

optimal paths for every agent in the group. Eventually, the maximum group size will ex-

ceed the size of the largest group, and all groups will have locally optimal paths without

interfering.

We refer to this algorithm as the Anytime Approximation (AA) Algorithm.
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3.4 Experiments
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Figure 3.1: Running time of each instance and percent of problems solved for each approxima-

tion algorithm on 1000 very large problems.

Once again, experiments were run on an Intel Core i7 @ 2.8GHz, and once again

test instances are randomly generated.

Figure 3.1 shows the running time of three approximation algorithms on 1000 ran-

domly generated instances with between 20 and 250 agents each. Two maximum group

size algorithms, MGS1 and MGS2, and HCA* were each run on these problems. We see

that MGS1, our coarsest approximation, can solve nearly all of the problems in under a

second each, while HCA* can only solve slightly over half of the problems. Even the

much tighter MGS2 algorithm can solve more problems than HCA*.

In order to illustrate the quality of the approximations produced by our approxima-

tion algorithms, 500 instances with between 20 and 100 agents were randomly gener-

ated, and the optimal algorithm OD+ID was allowed 40 seconds to solve each problem.

Only 289 of these 500 problems were solved by OD+ID. These 289 solved instances are

used to compare our approximation algorithms against known optimal solutions. We

refer to these problems as our reference problems.
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Figure 3.2: Running time of each instance for each maximum group size approximation algo-

rithm. HCA* only solved 93.8% of the problems.
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Five levels of the MDS algorithm and HCA* were run on our 289 reference prob-

lems. The running time is plotted in Figure 3.2. The solution quality is plotted in

Figure 3.3. Although HCA* ran faster than our MDS algorithms, it did not solve all of

the reference problems. MGS1, however, easily solved every problem in under 20ms

each. Furthermore, the solution quality of HCA* was worse than the solution quality

of every MGS algorithm. Finally, the solutions found by the MGS2 algorithm were all

found in under 150ms each, and had an average of less than one extra move above the

optimum.

0

0.5

1

1.5

2

2.5

50ms 100ms 250ms 500ms 1s 2s 5s

A
ve

ra
ge

 #
 o

f e
xt

ra
 m

ov
es

The Quality of Solutions Produced by the Anytime Algorithm

Figure 3.4: Solution quality vs. time for our anytime algorithm (lower is better).

Figure 3.4 shows the average number of extra moves for the solutions produced by

the anytime approximation algorithm when run for times ranging from 50ms to 5s. Note

that the algorithm performs better on average than MGS2 when run for 100ms, even

though MGS2 can sometimes run for nearly 150ms. We see that the paths generated

by the anytime algorithm rapidly approach the optimal paths, and the algorithm can

generate high quality paths in an amount of time suitable for applications in digital

entertainment.
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Figure 3.5 shows the running time of several lower bound algorithms together with

our optimal algorithm on our 289 reference problems as described above. We see that

the lower the maximum group size is, the more quickly the algorithm runs. The most

coarse approximation can be obtained in less than 100ms for every problem.
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Figure 3.6: The average solution quality for each lower bound algorithm (higher is better).

Figure 3.6 shows the quality of each approximation as an average proportion be-

tween the heuristic lower bound for a problem, and the optimal solution cost. The

coarsest approximation improves the lower bound by nearly 50% on average for each

reference instance, and runs quite quickly. The LB3 algorithm runs almost as quickly,

but improves the quality of the approximation to over 70%.
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CHAPTER 4

Conclusion

This thesis describes the general problem of cooperative pathfinding. We discussed the

pitfalls of modern incomplete and inadmissible algorithms for the cooperative pathfind-

ing problem, and identified two improvements to the standard admissible algorithm:

Operator decomposition, which was used to reduce the branching factor of the problem,

was effective at allowing the algorithm to consider only a small fraction of the children

of each node, and independence detection, which often allowed the paths of groups of

agents to be computed independently, without sacrificing optimality. The largest im-

provement was gained by exploiting this independence. On the other hand, operator

decomposition provided a significant benefit even when no independence was present

in the problem, and scaled more gracefully to larger problems than the standard ad-

missible algorithm. We also began characterizing the quality of optimal solutions, and

the running time of our optimal algorithm. Finally, we showed that this optimal ap-

proach suggested complete approximation algorithms with time-quality trade offs, and

that these algorithms perform far better than existing approximation algorithms, and are

capable of quickly finding solutions to problems with as many as 250 agents on a 32x32

grid.

While both independence detection and operator decomposition are applicable to

cooperative pathfinding problems in general, we presented a specific example of coop-

erative pathfinding which was modeled after typical video game designs, and used this
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problem to test the presented algorithms as well as to clarify the algorithm descriptions.

The results of the tests show that the standard admissible algorithm can be substantially

improved. Furthermore, we showed that when the techniques are used in combination,

the algorithm can be made practical.
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